1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Isolated sub-10 attosecond pulse generation by a 6-fs driving pulse and a 5-fs subharmonic controlling pulse
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/2/2/10.1063/1.3702589
1.
1. G. Mourou and T. Tajima, Science 331, 41 (2011).
http://dx.doi.org/10.1126/science.1200292
2.
2. M. Uiberacker, Th. Uphues, M , Schultze, A. J. Verhoef, V. Yakovlev, M. F. Kling, J. Rauschenberger, N. M. Kabachnik, H. Schröder, M. Lezius, K. L. Kompa, H.–G. Muller, M. J. J. Vrakking, S. Hendel, U. Kleineberg, U. Heinzmann, M. Drescher, and F. Krausz, Nature 446, 627 (2007).
http://dx.doi.org/10.1038/nature05648
3.
3. P. B. Corkum and F. Krausz, Nat. Phys. 3, 381 (2007).
http://dx.doi.org/10.1038/nphys620
4.
4. M. Drescher, M. Hentschel, R. Kienberger, M. Uiberacker, U. Heinzmann, and F. Krausz, Nature 419, 803 (2002).
http://dx.doi.org/10.1038/nature01143
5.
5. R. Kienberger, E. Goulielmakis, M. Uiberacker, A. Baltuska, V. Yakovlev, F. Bammer, A. Scrinzi, Th. Westerwalbesloh, U. Kleineberg, U. Heinzmann, M. Drescher, and F. Krausz, Nature 427, 817 (2004).
http://dx.doi.org/10.1038/nature02277
6.
6. P. M. Paul, E. S. Toma, P. Breger, G. Mullot, F. Auge, P. Balcou, H. G. Muller, and P. Agostini, Science 292, 1689 (2001).
http://dx.doi.org/10.1126/science.1059413
7.
7. M. Hentschel, R. Kienberger, C. Spielmann, G. A. Reider, N. Milosevic, T. Brabec, P. Corkum, U. Heinzmann, M. Drescher, and F. Krausz, Nature 414, 509 (2001).
http://dx.doi.org/10.1038/35107000
8.
8. G. Sansone, E. Benedetti, F. Calegari, C. Vozzi, L. Avaldi, R. Flammini, L. Poletto, P. Villoresi, C. Altucci, R. Velotta, S. Stagira, S. De Silvestri, and M. Nisoli, Science 314, 443 (2006).
http://dx.doi.org/10.1126/science.1132838
9.
9. E. Goulielmakis, M. Schultze, M. Hofstetter, V. S. Yakovlev, J. Gagnon, M. Uiberacker, A. L. Aquila, E. M. Gullikson, D. T. Attwood, R. Kienberger, F. Krausz, and U. Kleineberg, Science 320, 1614 (2008).
http://dx.doi.org/10.1126/science.1157846
10.
10. P. Tzallas, D. Charalambidis, N. A. Papadogiannis, K. Witte, and G. D. Tsakiris, Nature 426, 267 (2003).
http://dx.doi.org/10.1038/nature02091
11.
11. P. B. Corkum, Phys. Rev. Lett. 71, 1994 (1993).
http://dx.doi.org/10.1103/PhysRevLett.71.1994
12.
12. M. D. Perry and J. K. Crane, Phys. Rev. A 48, R4051 (1993).
http://dx.doi.org/10.1103/PhysRevA.48.R4051
13.
13. I. J. Kim, C. M. Kim, H. T. Kim, G. H. Lee, Y. S. Lee, J. Y. Park, D. J. Cho, and C. H. Nam, Phys. Rev. Lett. 94, 243901 (2005).
http://dx.doi.org/10.1103/PhysRevLett.94.243901
14.
14. G. Sansone, Phys. Rev. A 79, 053410 (2009).
http://dx.doi.org/10.1103/PhysRevA.79.053410
15.
15. G. Sansone, E. Benedetti, J. P. Caumes, S. Stagira, C. Vozzi, M. Nisoli, L. Poletto, P. Villoresi, V. Strelkov, I. Sola, L. B. Elouga, A. Zaïr, E. Mével, and E. Constant, Phys. Rev. A 80, 063837 (2009).
http://dx.doi.org/10.1103/PhysRevA.80.063837
16.
16. C. Altucci, R. Esposito, V. Tosa, and R. Velotta, Opt. Lett. 33, 2943 (2008).
http://dx.doi.org/10.1364/OL.33.002943
17.
17. C. Altucci, R. Velotta, V. Tosa, P. Villoresi, F. Frassetto, L. Poletto, C. Vozzi, F. Calegari, M. Negro, S. De Silvestri, and S. Stagira, Opt. Lett. 35, 2798 (2010).
http://dx.doi.org/10.1364/OL.35.002798
18.
18. C. Altucci, J. W. G. Tisch, and R. Velotta, J. Mod. Opt. 58, 1585 (2011).
http://dx.doi.org/10.1080/09500340.2011.611913
19.
19. A. D Bandrauk, S. Chelkowski, H. Yu, and E. Constant, Phys. Rev. A 56, R2537 (1997).
http://dx.doi.org/10.1103/PhysRevA.56.R2537
20.
20. O. S. Yu, M. Kaku, A. Suda, F. Kannari, and K. Midorikawa, Opt. Express 14, 7230 (2006).
http://dx.doi.org/10.1364/OE.14.007230
21.
21. T. Pfeifer, L. Gallmann, M. J. Abel, D. M. Neumark, and S. R. Leone, Opt. Lett. 31, 975 (2006).
http://dx.doi.org/10.1364/OL.31.000975
22.
22. T. Pfeifer, L. Gallmann, M. J. Abel, P. M. Nagel, D. M. Neumark, and S. R. Leone, Phys Rev. Lett. 97, 163901 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.163901
23.
23. Z. Zeng, Y. Cheng, X. Song, R. Li, and Z. Xu, Phys. Rev. Lett. 98, 203901 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.203901
24.
24. Z. Zhai and X. S. Liu, J. Phys. B: At. Mol. Opt. Phys. 41, 125602 (2008).
http://dx.doi.org/10.1088/0953-4075/41/12/125602
25.
25. Y. H. Guo, R. F. Lu, K. L. Han, and G. Z. He, Int. J. Quant. Chem. 109, 3410 (2009).
http://dx.doi.org/10.1002/qua.22168
26.
26. Z. Zhai, R. F. Yu, X. S. Liu, and Y. J. Yang, Phys. Rev. A 78, 041402R (2008).
http://dx.doi.org/10.1103/PhysRevA.78.041402
27.
27. P. Antoine, A. L’Huillier, and M. Lewenstein, Phys. Rev. Lett. 77, 1234 (1996).
http://dx.doi.org/10.1103/PhysRevLett.77.1234
28.
28. X. H. Song, Z. N. Zeng, Y. X. Fu, B. Cai, R. X. Li, Y. Cheng, and Z. Z. Xu, Phys. Rev. A 76, 043830 (2007).
http://dx.doi.org/10.1103/PhysRevA.76.043830
29.
29. R. López-Martens et al., Phys. Rev. Lett. 94, 033001 (2005).
http://dx.doi.org/10.1103/PhysRevLett.94.033001
30.
30. C. Altucci, V. Tosa, and R. Velotta, Phys. Rev. A 75, 061401R (2007).
http://dx.doi.org/10.1103/PhysRevA.75.061401
31.
31. J. G. Chen, S. L. Zeng, and Y. J. Yang, Phys. Rev. A 82, 043401 (2010).
http://dx.doi.org/10.1103/PhysRevA.82.043401
32.
32. R. F. Lu, P. Y. Zhang, and K. L. Han, Phys. Rev. E 77, 066701 (2008).
http://dx.doi.org/10.1103/PhysRevE.77.066701
33.
33. R. F. Lu, P. Y. Zhang, T. S. Chu, T. X. Xie, and K. L. Han, J. Chem. Phys. 126, 124304 (2007).
http://dx.doi.org/10.1063/1.2713399
34.
34. R. F. Lu, H. X. He, Y. H. Guo, and K. L. Han, J. Phys. B: At. Mol. Opt. Phys. 42, 225601 (2009).
http://dx.doi.org/10.1088/0953-4075/42/22/225601
35.
35. J. J. Carrera, X. M. Tong, and Shih. I. Chu, Phys. Rev. A 74, 023404 (2006).
http://dx.doi.org/10.1103/PhysRevA.74.023404
36.
36. M. B. Gaarde, J. L. Tate, and K. J. Schafer, J. Phys. B: At. Mol. And Opt. Phys. 41, 132001 (2008).
http://dx.doi.org/10.1088/0953-4075/41/13/132001
http://aip.metastore.ingenta.com/content/aip/journal/adva/2/2/10.1063/1.3702589
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

Left columns: the HHG spectra generated from (a) 5 fs/800 nm, 2.1×1015 W/cm2 pulse alone, 6 fs/800 nm, 2.1×1015 W/cm2 pulse alone, and the synthesized field by 6 fs/800 nm, 1.0×1015 W/cm2 driving laser and 8 fs/1600 nm, 2.0×1014 W/cm2 control laser (the harmonic intensities for the 5 fs and 6 fs pulses are multiplied by factors of 105 and 103, respectively); (b) the 6+5 and 5+6 scheme. Right columns: the electric fields of (c) the 6 fs/800 nm laser alone, and the 6+5 two-color laser; (d) the 6+5 and 5+6 lasers, and the inset plots the Gaussian envelops with different FWHMs. Except for the FWHM, other parameters for single pulse and two-color pulses are the same with those in (a) and (b), and unless stated otherwise, the optical cycle is particularly for 800 nm fundamental pulse.

Image of FIG. 2.

Click to view

FIG. 2.

(a) The time dependence of probability from the two-color 6+5 and 5+6 pulses. The ionization and recombination probabilities of the (b) 6+5, (c) 5+6, (d) 6+8 schemes.

Image of FIG. 3.

Click to view

FIG. 3.

Left: classic ionization and recombination energy maps from (a) 6 fs laser alone, and (b) the synthesized 6+5 laser. Right: the wavelet time–frequency profiles of the HHG spectra in (c) single 6 fs laser field and (d) 6+5 two-color field.

Image of FIG. 4.

Click to view

FIG. 4.

The temporal profile of isolated attosecond pulses from the two-color 6+5, 5+6 and 6+8 laser fields.

Loading

Article metrics loading...

/content/aip/journal/adva/2/2/10.1063/1.3702589
2012-04-02
2014-04-18

Abstract

We theoretically study high-order harmonic generation by quantum path control in a special two-color laser field, which is synthesized by a 6 fs/800 nm fundamental pulse and a weaker 5 fs/1600 nm subharmonic controlling pulse. Single quantum path is selected without optimizing any carrier phase, which not only broadens the harmonic bandwidth to 400 eV, but also enhances the harmonic conversion efficiency in comparison with the short-plus-long scheme, which is based on 5 fs/800 nm driving pulse and 6 fs/1600 nm control pulse. An isolated 8-attosecond pulse is produced with currently available ultrafast laser sources.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/2/2/1.3702589.html;jsessionid=4hddv628wwugr.x-aip-live-06?itemId=/content/aip/journal/adva/2/2/10.1063/1.3702589&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Isolated sub-10 attosecond pulse generation by a 6-fs driving pulse and a 5-fs subharmonic controlling pulse
http://aip.metastore.ingenta.com/content/aip/journal/adva/2/2/10.1063/1.3702589
10.1063/1.3702589
SEARCH_EXPAND_ITEM