Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/2/2/10.1063/1.3702777
1.
1. E. Pop, D. Mann, J. Cao, Q. Wang, K. Goodson, and H. Dai, Phys. Rev. Lett. 95, 155505 (2005).
http://dx.doi.org/10.1103/PhysRevLett.95.155505
2.
2. A. Javey, J. Guo, Q. Wang, M. Lundstrom, and H. Dai, Nature (London) 424, 654 (2003).
http://dx.doi.org/10.1038/nature01797
3.
3. Z. Yao, C. L. Kane, and C. Dekker, Phys. Rev. Lett. 84, 2941 (2000).
http://dx.doi.org/10.1103/PhysRevLett.84.2941
4.
4. H.–Y. Chiu, V. V. Deshpande, H. W. Ch. Postma, C. N. Lau, C. Mikó, L. Forró, and M. Bockrath, Phys. Rev. Lett. 95, 226101 (2005).
http://dx.doi.org/10.1103/PhysRevLett.95.226101
5.
5. P. G. Collins, M. Hersam, M. Arnold, R. Martel, and Ph. Avouris, Phys. Rev. Lett. 86, 3128 (2000).
http://dx.doi.org/10.1103/PhysRevLett.86.3128
6.
6. P. G. Collins, M. S. Arnold, and Ph. Avouris, Science 292, 706 (2001).
http://dx.doi.org/10.1126/science.1058782
7.
7. H. J. Li, W. G. Lu, J. J. Li, X. D. Bai, and C. Z. Gu, Phys. Rev. Lett. 95, 086601 (2005).
http://dx.doi.org/10.1103/PhysRevLett.95.086601
8.
8. Y.-F. Chen and M. S. Fuhrer, Phys. Rev. Lett. 95, 236803 (2005).
http://dx.doi.org/10.1103/PhysRevLett.95.236803
9.
9. A. Javey, J. Guo, M. Paulsson, Q. Wang, D. Mann, M. Lundstrom, and H. Dai, Phys. Rev. Lett. 92, 106804 (2004).
http://dx.doi.org/10.1103/PhysRevLett.92.106804
10.
10. J.–Y. Park, S. Rosenblatt, Y. Yaish, V. Saxanova, H. Üstünel, S. Braig, T. A. Arias, P. W. Brouwer, and P. L. McEuen, Nano Lett. 4, 517 (2004).
http://dx.doi.org/10.1021/nl035258c
11.
11. B. Bourlon, D. C. Glattli, B. Placais, J. M. Berroir, C. Mico, L. Forró, and A. Bachtold, Phys. Rev. Lett. 92, 026804 (2004).
http://dx.doi.org/10.1103/PhysRevLett.92.026804
12.
12. J. Y. Huang, S. hen, S. H. Jo, Z. Wang, D. X. Han, G. Chen, M. S. Dresselhauss, and Z. F. Ren, Phys. Rev. Lett. 94, 236802 (2005).
http://dx.doi.org/10.1103/PhysRevLett.94.236802
13.
13. S. Moon, W. Song, N. Kim, J. S. Lee, P. S. Na, S.-G. Lee, J. Park, M.-H. Jung, W.-H. Lee, K. Kang, C. J. Lee, and J. Kim, Nanotechnology 18, 235201 (2007).
http://dx.doi.org/10.1088/0957-4484/18/23/235201
14.
14. H. Y. Chan, N. Xi, J. Zhang, and G. Li, Proc. First IEEE Int. Conf. on Nano/Micro Engineered and Molecular systems, 2006.
15.
15. P. Mahanandia and K. K. Nanda, Appl. Phys. Lett. 93, 063105 (2008).
http://dx.doi.org/10.1063/1.2970033
16.
16. P. Mahanandia, L. T. Singh, and K. K. Nanda, Rev. Sci. Instrum. 79, 053909 (2008).
http://dx.doi.org/10.1063/1.2932343
17.
17. S. Frank, P. Poncharal, Z. L. Wang, and W. A. de Heer, Science 280, 1744 (1998).
http://dx.doi.org/10.1126/science.280.5370.1744
18.
18. T. W. Ebbesen, H. J. Lezec, H. Hiura, J. W. Bennett, H. F. Ghaemi, and T. Thio, Nature 382, 54 (1996).
http://dx.doi.org/10.1038/382054a0
19.
19. P. J. de Pablo, C. Gómez-Navarro, J. Colchero, P. A. Serena, J. G. Herrero, and A. M. Baró, Phys. Rev. Lett. 88, 036804 (2002).
http://dx.doi.org/10.1103/PhysRevLett.88.036804
20.
20. M. Bockrath, D. H. Cobden, J. Lu, A. G. Rinzler, R. E. Smalley, L. Balents, and P. L. McEuen, Nature 397, 598 (1999).
http://dx.doi.org/10.1038/17569
21.
21. P. Mahanandia and K. K. Nanda, Nanotechnology 8, 155602 (2008).
http://dx.doi.org/10.1088/0957-4484/19/15/155602
22.
22. P. J. Collins, K. Bradley, M. Ishigami, and A. Zettle, Science 287, 1801 (2000).
http://dx.doi.org/10.1126/science.287.5459.1801
23.
23. V. Derycke, R. Martel, J. Appenzeller, and Ph. Avouris, Appl. Phys. Lett. 80, 2773 (2002).
http://dx.doi.org/10.1063/1.1467702
24.
24. G. U. Sumanasekera, C. K. W. Adu, S Fang, and P. C. Eklund, Phys. Rev. Lett. 85, 1096 (2000).
http://dx.doi.org/10.1103/PhysRevLett.85.1096
25.
25. S. Maeda, P. Wilhite, N. Kanzaki, T. Yamada, and C. Y. Yang, AIP Adv. 1, 022102 (2011).
http://dx.doi.org/10.1063/1.3582812
26.
26. M. Jakob, Heat transfer (John Wiley & Sons, New York, 1949).
27.
27. Y. Wei, K. Jiang, L. Liu, Z. Chen, and S. Fa, Nano Lett. 7, 3792 (2007)
http://dx.doi.org/10.1021/nl072298y
28.
28. M. A. Kuroda, A. Cangellaris, and J.-P. Leburton, Phys. Rev. Lett. 95, 266803 (2005).
http://dx.doi.org/10.1103/PhysRevLett.95.266803
29.
29. M. A. Kuroda and J.-P. Leburton, Appl. Phys. Lett. 89, 103102 (2006).
http://dx.doi.org/10.1063/1.2345244
30.
30. P. Liu, Y. Wei, K. Jiang, Q. Sun, X. Zhang, and S. Fan, Phys. Rev. B 73, 235412 (2006).
http://dx.doi.org/10.1103/PhysRevB.73.235412
31.
31. D. C. Cox, R. D. Forrest, P. R. Smith, and S. R. P. Silva, Appl. Phys. Lett. 85, 2065 (2004).
http://dx.doi.org/10.1063/1.1790597
32.
32. N. Y. Huang, J. C. She, J. Chen, S. Z. Deng, N. S. Xu, H. Bishop, S. E. Huq, L. Wang, D. Y. Zhong, E. G. Wang, and D. M. Chen, Phys. Rev. Lett. 93, 075501 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.075501
33.
33. K. Mølhave, S. B. Gudnason, A. T. Pedersen, C. H. Clausen, A. Horsewell, and P. Bøggild, Nano Lett. 6, 1663 (2006).
http://dx.doi.org/10.1021/nl060821n
34.
34. J. Cumings, P. G. Collins, and A. Zettle, Nature 406, 586 (2000).
http://dx.doi.org/10.1038/35020698
35.
35. Y. Wei, P. Liu, K. Jiang, L. Liu, and S. Fan, Appl. Phys. Lett. 93, 023118 (2007).
http://dx.doi.org/10.1063/1.2957986
36.
36. A. Liao, R. Alizadegan, Z.-Y. Ong, S. Dutta, K. J. Hsia, and E. Pop, Phys. Rev. B 82, 205406 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.205406
37.
37. C.-L. Tsai, A. Liao, E. Pop, and M. Shim, Appl. Phys. Lett. 99, 053120 (2011).
http://dx.doi.org/10.1063/1.3622769
http://aip.metastore.ingenta.com/content/aip/journal/adva/2/2/10.1063/1.3702777
Loading
/content/aip/journal/adva/2/2/10.1063/1.3702777
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/2/2/10.1063/1.3702777
2012-04-03
2016-12-06

Abstract

We have investigated the current-voltage characteristics of carbon nanotube arrays and shown that the current through the arrays increases rapidly with applied voltage before the breakdown occurs. Simultaneous measurements of current and temperature at one end of the arrays suggest that the rapid increase of current is due to Joule heating. The current through the array and the threshold voltage are found to increase with decreasing pressure.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/2/2/1.3702777.html;jsessionid=Amng-zYMHxNfYAlWwTDMUAZu.x-aip-live-06?itemId=/content/aip/journal/adva/2/2/10.1063/1.3702777&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/2/2/10.1063/1.3702777&pageURL=http://scitation.aip.org/content/aip/journal/adva/2/2/10.1063/1.3702777'
Right1,Right2,Right3,