1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Electrical characteristics of multiwalled carbon nanotube arrays and influence of pressure
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/2/2/10.1063/1.3702777
1.
1. E. Pop, D. Mann, J. Cao, Q. Wang, K. Goodson, and H. Dai, Phys. Rev. Lett. 95, 155505 (2005).
http://dx.doi.org/10.1103/PhysRevLett.95.155505
2.
2. A. Javey, J. Guo, Q. Wang, M. Lundstrom, and H. Dai, Nature (London) 424, 654 (2003).
http://dx.doi.org/10.1038/nature01797
3.
3. Z. Yao, C. L. Kane, and C. Dekker, Phys. Rev. Lett. 84, 2941 (2000).
http://dx.doi.org/10.1103/PhysRevLett.84.2941
4.
4. H.–Y. Chiu, V. V. Deshpande, H. W. Ch. Postma, C. N. Lau, C. Mikó, L. Forró, and M. Bockrath, Phys. Rev. Lett. 95, 226101 (2005).
http://dx.doi.org/10.1103/PhysRevLett.95.226101
5.
5. P. G. Collins, M. Hersam, M. Arnold, R. Martel, and Ph. Avouris, Phys. Rev. Lett. 86, 3128 (2000).
http://dx.doi.org/10.1103/PhysRevLett.86.3128
6.
6. P. G. Collins, M. S. Arnold, and Ph. Avouris, Science 292, 706 (2001).
http://dx.doi.org/10.1126/science.1058782
7.
7. H. J. Li, W. G. Lu, J. J. Li, X. D. Bai, and C. Z. Gu, Phys. Rev. Lett. 95, 086601 (2005).
http://dx.doi.org/10.1103/PhysRevLett.95.086601
8.
8. Y.-F. Chen and M. S. Fuhrer, Phys. Rev. Lett. 95, 236803 (2005).
http://dx.doi.org/10.1103/PhysRevLett.95.236803
9.
9. A. Javey, J. Guo, M. Paulsson, Q. Wang, D. Mann, M. Lundstrom, and H. Dai, Phys. Rev. Lett. 92, 106804 (2004).
http://dx.doi.org/10.1103/PhysRevLett.92.106804
10.
10. J.–Y. Park, S. Rosenblatt, Y. Yaish, V. Saxanova, H. Üstünel, S. Braig, T. A. Arias, P. W. Brouwer, and P. L. McEuen, Nano Lett. 4, 517 (2004).
http://dx.doi.org/10.1021/nl035258c
11.
11. B. Bourlon, D. C. Glattli, B. Placais, J. M. Berroir, C. Mico, L. Forró, and A. Bachtold, Phys. Rev. Lett. 92, 026804 (2004).
http://dx.doi.org/10.1103/PhysRevLett.92.026804
12.
12. J. Y. Huang, S. hen, S. H. Jo, Z. Wang, D. X. Han, G. Chen, M. S. Dresselhauss, and Z. F. Ren, Phys. Rev. Lett. 94, 236802 (2005).
http://dx.doi.org/10.1103/PhysRevLett.94.236802
13.
13. S. Moon, W. Song, N. Kim, J. S. Lee, P. S. Na, S.-G. Lee, J. Park, M.-H. Jung, W.-H. Lee, K. Kang, C. J. Lee, and J. Kim, Nanotechnology 18, 235201 (2007).
http://dx.doi.org/10.1088/0957-4484/18/23/235201
14.
14. H. Y. Chan, N. Xi, J. Zhang, and G. Li, Proc. First IEEE Int. Conf. on Nano/Micro Engineered and Molecular systems, 2006.
15.
15. P. Mahanandia and K. K. Nanda, Appl. Phys. Lett. 93, 063105 (2008).
http://dx.doi.org/10.1063/1.2970033
16.
16. P. Mahanandia, L. T. Singh, and K. K. Nanda, Rev. Sci. Instrum. 79, 053909 (2008).
http://dx.doi.org/10.1063/1.2932343
17.
17. S. Frank, P. Poncharal, Z. L. Wang, and W. A. de Heer, Science 280, 1744 (1998).
http://dx.doi.org/10.1126/science.280.5370.1744
18.
18. T. W. Ebbesen, H. J. Lezec, H. Hiura, J. W. Bennett, H. F. Ghaemi, and T. Thio, Nature 382, 54 (1996).
http://dx.doi.org/10.1038/382054a0
19.
19. P. J. de Pablo, C. Gómez-Navarro, J. Colchero, P. A. Serena, J. G. Herrero, and A. M. Baró, Phys. Rev. Lett. 88, 036804 (2002).
http://dx.doi.org/10.1103/PhysRevLett.88.036804
20.
20. M. Bockrath, D. H. Cobden, J. Lu, A. G. Rinzler, R. E. Smalley, L. Balents, and P. L. McEuen, Nature 397, 598 (1999).
http://dx.doi.org/10.1038/17569
21.
21. P. Mahanandia and K. K. Nanda, Nanotechnology 8, 155602 (2008).
http://dx.doi.org/10.1088/0957-4484/19/15/155602
22.
22. P. J. Collins, K. Bradley, M. Ishigami, and A. Zettle, Science 287, 1801 (2000).
http://dx.doi.org/10.1126/science.287.5459.1801
23.
23. V. Derycke, R. Martel, J. Appenzeller, and Ph. Avouris, Appl. Phys. Lett. 80, 2773 (2002).
http://dx.doi.org/10.1063/1.1467702
24.
24. G. U. Sumanasekera, C. K. W. Adu, S Fang, and P. C. Eklund, Phys. Rev. Lett. 85, 1096 (2000).
http://dx.doi.org/10.1103/PhysRevLett.85.1096
25.
25. S. Maeda, P. Wilhite, N. Kanzaki, T. Yamada, and C. Y. Yang, AIP Adv. 1, 022102 (2011).
http://dx.doi.org/10.1063/1.3582812
26.
26. M. Jakob, Heat transfer (John Wiley & Sons, New York, 1949).
27.
27. Y. Wei, K. Jiang, L. Liu, Z. Chen, and S. Fa, Nano Lett. 7, 3792 (2007)
http://dx.doi.org/10.1021/nl072298y
28.
28. M. A. Kuroda, A. Cangellaris, and J.-P. Leburton, Phys. Rev. Lett. 95, 266803 (2005).
http://dx.doi.org/10.1103/PhysRevLett.95.266803
29.
29. M. A. Kuroda and J.-P. Leburton, Appl. Phys. Lett. 89, 103102 (2006).
http://dx.doi.org/10.1063/1.2345244
30.
30. P. Liu, Y. Wei, K. Jiang, Q. Sun, X. Zhang, and S. Fan, Phys. Rev. B 73, 235412 (2006).
http://dx.doi.org/10.1103/PhysRevB.73.235412
31.
31. D. C. Cox, R. D. Forrest, P. R. Smith, and S. R. P. Silva, Appl. Phys. Lett. 85, 2065 (2004).
http://dx.doi.org/10.1063/1.1790597
32.
32. N. Y. Huang, J. C. She, J. Chen, S. Z. Deng, N. S. Xu, H. Bishop, S. E. Huq, L. Wang, D. Y. Zhong, E. G. Wang, and D. M. Chen, Phys. Rev. Lett. 93, 075501 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.075501
33.
33. K. Mølhave, S. B. Gudnason, A. T. Pedersen, C. H. Clausen, A. Horsewell, and P. Bøggild, Nano Lett. 6, 1663 (2006).
http://dx.doi.org/10.1021/nl060821n
34.
34. J. Cumings, P. G. Collins, and A. Zettle, Nature 406, 586 (2000).
http://dx.doi.org/10.1038/35020698
35.
35. Y. Wei, P. Liu, K. Jiang, L. Liu, and S. Fan, Appl. Phys. Lett. 93, 023118 (2007).
http://dx.doi.org/10.1063/1.2957986
36.
36. A. Liao, R. Alizadegan, Z.-Y. Ong, S. Dutta, K. J. Hsia, and E. Pop, Phys. Rev. B 82, 205406 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.205406
37.
37. C.-L. Tsai, A. Liao, E. Pop, and M. Shim, Appl. Phys. Lett. 99, 053120 (2011).
http://dx.doi.org/10.1063/1.3622769
http://aip.metastore.ingenta.com/content/aip/journal/adva/2/2/10.1063/1.3702777
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

(a) Schematic of the device used for the IV characteristic studies. (b) SEM micrograph of a suspended NT array device with an array diameter of ∼50 μm and length ∼600 μm. (c) SEM micrograph of the array taken at higher magnification. (d) TEM micrograph of an NT. (e) HRTEM micrograph of an NT and (f) is the magnified image of the region marked by a rectangular box in (e). (g,h) SEM images showing that MWNT arrays stretch without apparent interruption.

Image of FIG. 2.

Click to view

FIG. 2.

(a) Typical I-V characteristic of an array in ambient. (b) Typical I-V characteristic of an array at 2x10-5 mbar. (c) I-V characteristics at different pressures. (d) I-V characteristics of a different array at ambient and repeated measurements at 2x10-5 mbar. Lines are the guide to the eye.

Image of FIG. 3.

Click to view

FIG. 3.

Rise in temperature as a function of VI. Inset shows the T versus V 2 plot. The lines are guide to the eye.

Image of FIG. 4.

Click to view

FIG. 4.

(a) I-t and (b) T-t curves at 1.8 V. (c) I-t and (d) T-t curves at 2.0 V. The solid lines are guide to the eye.

Image of FIG. 5.

Click to view

FIG. 5.

(a-c) SEM image of a suspended NT array device with an array diameter of 450 μm and length 700 μm taken after the partial breakdown and different regions. (d) SEM image of a broken array of length 1.6 mm and diameter 50 μm. (e) SEM image of another broken array.

Image of FIG. 6.

Click to view

FIG. 6.

Temperature distribution of (a) metallic NTs with different length and (b) semiconducting NTs with different diameter. The temperature profile is asymmetric for semiconducting NT but the temperature is maximum close to the middle for bigger NTs.

Loading

Article metrics loading...

/content/aip/journal/adva/2/2/10.1063/1.3702777
2012-04-03
2014-04-23

Abstract

We have investigated the current-voltage characteristics of carbon nanotube arrays and shown that the current through the arrays increases rapidly with applied voltage before the breakdown occurs. Simultaneous measurements of current and temperature at one end of the arrays suggest that the rapid increase of current is due to Joule heating. The current through the array and the threshold voltage are found to increase with decreasing pressure.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/2/2/1.3702777.html;jsessionid=35r6emnihodhk.x-aip-live-03?itemId=/content/aip/journal/adva/2/2/10.1063/1.3702777&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Electrical characteristics of multiwalled carbon nanotube arrays and influence of pressure
http://aip.metastore.ingenta.com/content/aip/journal/adva/2/2/10.1063/1.3702777
10.1063/1.3702777
SEARCH_EXPAND_ITEM