Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi, and B. H. Hong, Nature 457, 706 (2009).
2. G. Eda, Y.-Y. Lin, S. Miller, C.-W. Chen, W.-F. Su, and M. Chhowalla, Appl. Phys. Lett. 92, 233305 (2008).
3. X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colombo, and R. S. Ruoff, Nano Lett. 9, 4359 (2009).
4. X. Liang, Z. Fu, and S. Y. Chou, Nano Lett. 7, 3840 (2007).
5. J.-H. Chen, M. Ishigami, C. Jang, D. R. Hines, M. S. Fuhrer, and E. D. Williams, Adv. Mater. 19, 3623 (2007).
6. R. Nouchi, M. Shiraishi, and Y. Suzuki, Appl. Phys. Lett. 93, 152104 (2008).
7. M. J. Allen, V. C. Tung, L. Gomez, Z. Xu, L.-M. Chen, K. S. Nelson, C. Zhou, R. B. Kaner, and Y. Yang, Adv. Mater. 21, 2098 (2009).
8. J. Bai, X. Duan, and Y. Huang, Nano Lett. 9, 2083 (2009).
9. M. A. Rafiee, J. Rafiee, Z. Wang, H. Song, Z.-Z. Yu, and N. Koratkar, ACS Nano. 3, 3884 (2009).
10. A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, Nano Lett. 8, 902 (2008).
11. J. Wu, M. Agrawal, H. A. Becerril, Z. Bao, Z. Liu, Y. Chen, and P. Peumans, ACS Nano. 4, 43 (2010).
12. E. J. H. Lee, K. Balasubramanian, R. T. Weitz, M. Burghard, and K. Kern, Nature Nanotech. 3, 486 (2008).
13. D. A. Dikin, S. Stankovich, E. J. Zimney, R. D. Piner, G. H. B. Dommett, G. Evmeenko, S. T. Nguyen, and R. S. Rouff, Nature 448, 457 (2007).
14. Y. Zhu, S. Muraili, W. Cai, X. Li, J. W. Suk, J. R. Potts, and R. S. Ruoff, Adv. Mater. 22, 3906 (2010).
15. K. A. Mkhoyan, A. W. Contryman, J. Silcox, D. A. Stewart, G. Eda, C. Mattevi, S. Miller, and M. Chhowalla, Nano Lett. 9, 1058 (2009).
16. D. W. Boukhvalov and M. I. Katsnelson, J. Am. Chem. Soc. 130, 10697 (2008).
17. D. H. Wang, D. W. Choi, J. Li, Z. G. Yang, Z. M. Nie, R. Kou, D. H. Hu, C. M. Wang, L. V. Saraf, and J. G. Zhang, ACO Nano 3, 907 (2009).
18. X. Wu, M. Sprinkle, X. Li, F. Ming, C. Berkger, and W. A. Heer, Phys. Rev. Lett. 101, 026801 (2008).
19. S. Gilij, S. Han, M. Wang, K. L. Wang, and R. B. A. Kaner, Nano Lett. 7. 3394 (2007).
20. M. Jin, H.-K. Jeong, W. J. Yu, D. J. Bae, B. R. Kang, and Y. H. Lee, J. Phys. D: Appl. Phys. 42 135109 (2009).
21. H. Y. Jeong, J. Y. Kim, J. W. Kim, J. O. Hwang, J.-E. Kim, J.-Y. Lee, T. H. Yoon, B. J. Cho, S. O. Kim, R. S. Ruoff, and S.-Y. Choi, Nano Lett. 10, 4381 (2010).
22. S.-S. Li, K.-H. Tu, C.-C. Lin, and M. Chhowalla, ACS Nano 4, 3169 (2010).
23. Z. Wei, D. Wang, S. Kim, S.-Y. Kim, Y. Hu, M. K. Yakes, A. R. Laracuente, Z. Dai, S. R. Marder, C. Berkger, W. P. King, W. A. de Heer, P. E. Sheehan, and E. Riedo, Science 328, 1373 (2010).
24. C. Chen, W. Cai, M. Long, B. Zhou, Y. Wu, D. Wu, and Y. Feng, ACS Nano 4, 6425 (2010).
25. X. Zhang, M. Sun, Y. Sun, J. Li, P. Song, T. Su, and X. Cui, Acta Phys. Chim. Sin. 27, 2381 (2011).
26. K. P. Loh, Q. Bao, G. Eda, and M. Chhowalla, Nature Chem. 2, 1015 (2010).
27. F. Xia, T. Mueller, Y. Lin, A. Valdes-Garcia, and O. Avouris, Nat. Nano-technol. 4, 839 (2009).
28. J. Park, Y. H. Ahn, and C. Ruiz-Vargas, Nano Lett. 9. 1742 (2009).
29. E. J. H. Lee, K. Balasubramanian, R. T. Weitz, M. Burghard, and K. kern, Nat. Nano-technol. 3, 486 (2008).
30. F. Xia, T. Mueller, R. Golizadeh-Mojarad, M. Freitag, Y.-M. Lin, J. Tsang, V. Perebeinos, and P. Avouris, Nano Lett. 9, 1039 (2009).
31. S. Ghosh, B. K. Sarker, A. Chunder, L. Zhai, and S. I. Khondaker, Appl. Phys. Lett. 96, 163109 (2010).
32. C. Mattevi, G. Eda, S. Agnoli, S. Miller, K. A. Mkhoyan, O. Celik, D. Mastrogiovanni, G. Granozzi, E. Garfunkel, and M. Chhowalla, Adv. Mater. 19, 2577 (2009).

Data & Media loading...


Article metrics loading...



Characterizations of photoresponse of a graphene oxide (GO) thin film to a near infrared laser light were studied. Results showed the photocurrent in the GO thin film was cathodic, always flowing in an opposite direction to the initial current generated by the preset bias voltage that shows a fundamental discrepancy from the photocurrent in the reduced graphene oxide thin film. Light illumination on the GO thin film thus results in more free electrons that offset the initial current. By examining GO thin films reduced at different temperatures, the critical temperature for reversing the photocurrent from cathodic to anodic was found around 187°C. The dynamic photoresponse for the GO thin film was further characterized through the response time constants within the laser on and off durations, denoted as τon and τoff, respectively. τon for the GO thin film was comparable to the other carbon-based thin films such as carbon nanotubes and graphenes. τoff was, however, much larger than that of the other's. This discrepancy was attributable to the retardation of exciton recombination rate thanks to the existing oxygen functional groups and defects in the GO thin films.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd