Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/2/2/10.1063/1.3702871
1.
1. K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi, and B. H. Hong, Nature 457, 706 (2009).
http://dx.doi.org/10.1038/nature07719
2.
2. G. Eda, Y.-Y. Lin, S. Miller, C.-W. Chen, W.-F. Su, and M. Chhowalla, Appl. Phys. Lett. 92, 233305 (2008).
http://dx.doi.org/10.1063/1.2937846
3.
3. X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colombo, and R. S. Ruoff, Nano Lett. 9, 4359 (2009).
http://dx.doi.org/10.1021/nl902623y
4.
4. X. Liang, Z. Fu, and S. Y. Chou, Nano Lett. 7, 3840 (2007).
http://dx.doi.org/10.1021/nl072566s
5.
5. J.-H. Chen, M. Ishigami, C. Jang, D. R. Hines, M. S. Fuhrer, and E. D. Williams, Adv. Mater. 19, 3623 (2007).
http://dx.doi.org/10.1002/adma.200701059
6.
6. R. Nouchi, M. Shiraishi, and Y. Suzuki, Appl. Phys. Lett. 93, 152104 (2008).
http://dx.doi.org/10.1063/1.2998396
7.
7. M. J. Allen, V. C. Tung, L. Gomez, Z. Xu, L.-M. Chen, K. S. Nelson, C. Zhou, R. B. Kaner, and Y. Yang, Adv. Mater. 21, 2098 (2009).
http://dx.doi.org/10.1002/adma.200803000
8.
8. J. Bai, X. Duan, and Y. Huang, Nano Lett. 9, 2083 (2009).
http://dx.doi.org/10.1021/nl900531n
9.
9. M. A. Rafiee, J. Rafiee, Z. Wang, H. Song, Z.-Z. Yu, and N. Koratkar, ACS Nano. 3, 3884 (2009).
http://dx.doi.org/10.1021/nn9010472
10.
10. A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, Nano Lett. 8, 902 (2008).
http://dx.doi.org/10.1021/nl0731872
11.
11. J. Wu, M. Agrawal, H. A. Becerril, Z. Bao, Z. Liu, Y. Chen, and P. Peumans, ACS Nano. 4, 43 (2010).
http://dx.doi.org/10.1021/nn900728d
12.
12. E. J. H. Lee, K. Balasubramanian, R. T. Weitz, M. Burghard, and K. Kern, Nature Nanotech. 3, 486 (2008).
http://dx.doi.org/10.1038/nnano.2008.172
13.
13. D. A. Dikin, S. Stankovich, E. J. Zimney, R. D. Piner, G. H. B. Dommett, G. Evmeenko, S. T. Nguyen, and R. S. Rouff, Nature 448, 457 (2007).
http://dx.doi.org/10.1038/nature06016
14.
14. Y. Zhu, S. Muraili, W. Cai, X. Li, J. W. Suk, J. R. Potts, and R. S. Ruoff, Adv. Mater. 22, 3906 (2010).
http://dx.doi.org/10.1002/adma.201001068
15.
15. K. A. Mkhoyan, A. W. Contryman, J. Silcox, D. A. Stewart, G. Eda, C. Mattevi, S. Miller, and M. Chhowalla, Nano Lett. 9, 1058 (2009).
http://dx.doi.org/10.1021/nl8034256
16.
16. D. W. Boukhvalov and M. I. Katsnelson, J. Am. Chem. Soc. 130, 10697 (2008).
http://dx.doi.org/10.1021/ja8021686
17.
17. D. H. Wang, D. W. Choi, J. Li, Z. G. Yang, Z. M. Nie, R. Kou, D. H. Hu, C. M. Wang, L. V. Saraf, and J. G. Zhang, ACO Nano 3, 907 (2009).
http://dx.doi.org/10.1021/nn900150y
18.
18. X. Wu, M. Sprinkle, X. Li, F. Ming, C. Berkger, and W. A. Heer, Phys. Rev. Lett. 101, 026801 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.026801
19.
19. S. Gilij, S. Han, M. Wang, K. L. Wang, and R. B. A. Kaner, Nano Lett. 7. 3394 (2007).
http://dx.doi.org/10.1021/nl0717715
20.
20. M. Jin, H.-K. Jeong, W. J. Yu, D. J. Bae, B. R. Kang, and Y. H. Lee, J. Phys. D: Appl. Phys. 42 135109 (2009).
http://dx.doi.org/10.1088/0022-3727/42/13/135109
21.
21. H. Y. Jeong, J. Y. Kim, J. W. Kim, J. O. Hwang, J.-E. Kim, J.-Y. Lee, T. H. Yoon, B. J. Cho, S. O. Kim, R. S. Ruoff, and S.-Y. Choi, Nano Lett. 10, 4381 (2010).
http://dx.doi.org/10.1021/nl101902k
22.
22. S.-S. Li, K.-H. Tu, C.-C. Lin, and M. Chhowalla, ACS Nano 4, 3169 (2010).
http://dx.doi.org/10.1021/nn100551j
23.
23. Z. Wei, D. Wang, S. Kim, S.-Y. Kim, Y. Hu, M. K. Yakes, A. R. Laracuente, Z. Dai, S. R. Marder, C. Berkger, W. P. King, W. A. de Heer, P. E. Sheehan, and E. Riedo, Science 328, 1373 (2010).
http://dx.doi.org/10.1126/science.1188119
24.
24. C. Chen, W. Cai, M. Long, B. Zhou, Y. Wu, D. Wu, and Y. Feng, ACS Nano 4, 6425 (2010).
http://dx.doi.org/10.1021/nn102130m
25.
25. X. Zhang, M. Sun, Y. Sun, J. Li, P. Song, T. Su, and X. Cui, Acta Phys. Chim. Sin. 27, 2381 (2011).
26.
26. K. P. Loh, Q. Bao, G. Eda, and M. Chhowalla, Nature Chem. 2, 1015 (2010).
http://dx.doi.org/10.1038/nchem.907
27.
27. F. Xia, T. Mueller, Y. Lin, A. Valdes-Garcia, and O. Avouris, Nat. Nano-technol. 4, 839 (2009).
http://dx.doi.org/10.1038/nnano.2009.292
28.
28. J. Park, Y. H. Ahn, and C. Ruiz-Vargas, Nano Lett. 9. 1742 (2009).
http://dx.doi.org/10.1021/nl8029493
29.
29. E. J. H. Lee, K. Balasubramanian, R. T. Weitz, M. Burghard, and K. kern, Nat. Nano-technol. 3, 486 (2008).
http://dx.doi.org/10.1038/nnano.2008.172
30.
30. F. Xia, T. Mueller, R. Golizadeh-Mojarad, M. Freitag, Y.-M. Lin, J. Tsang, V. Perebeinos, and P. Avouris, Nano Lett. 9, 1039 (2009).
http://dx.doi.org/10.1021/nl8033812
31.
31. S. Ghosh, B. K. Sarker, A. Chunder, L. Zhai, and S. I. Khondaker, Appl. Phys. Lett. 96, 163109 (2010).
http://dx.doi.org/10.1063/1.3415499
32.
32. C. Mattevi, G. Eda, S. Agnoli, S. Miller, K. A. Mkhoyan, O. Celik, D. Mastrogiovanni, G. Granozzi, E. Garfunkel, and M. Chhowalla, Adv. Mater. 19, 2577 (2009).
http://dx.doi.org/10.1002/adfm.200900166
http://aip.metastore.ingenta.com/content/aip/journal/adva/2/2/10.1063/1.3702871
Loading
/content/aip/journal/adva/2/2/10.1063/1.3702871
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/2/2/10.1063/1.3702871
2012-04-03
2016-12-08

Abstract

Characterizations of photoresponse of a graphene oxide (GO) thin film to a near infrared laser light were studied. Results showed the photocurrent in the GO thin film was cathodic, always flowing in an opposite direction to the initial current generated by the preset bias voltage that shows a fundamental discrepancy from the photocurrent in the reduced graphene oxide thin film. Light illumination on the GO thin film thus results in more free electrons that offset the initial current. By examining GO thin films reduced at different temperatures, the critical temperature for reversing the photocurrent from cathodic to anodic was found around 187°C. The dynamic photoresponse for the GO thin film was further characterized through the response time constants within the laser on and off durations, denoted as τon and τoff, respectively. τon for the GO thin film was comparable to the other carbon-based thin films such as carbon nanotubes and graphenes. τoff was, however, much larger than that of the other's. This discrepancy was attributable to the retardation of exciton recombination rate thanks to the existing oxygen functional groups and defects in the GO thin films.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/2/2/1.3702871.html;jsessionid=R4JURKvlEVh83pT1ZW_cI5Hv.x-aip-live-02?itemId=/content/aip/journal/adva/2/2/10.1063/1.3702871&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/2/2/10.1063/1.3702871&pageURL=http://scitation.aip.org/content/aip/journal/adva/2/2/10.1063/1.3702871'
Right1,Right2,Right3,