Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/2/2/10.1063/1.3703320
1.
1. M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010).
http://dx.doi.org/10.1103/RevModPhys.82.3045
2.
2. H. J. Zhang, C. X. Liu, X. L. Qi, X. Dai, Z. Fang, and S. C. Zhang, Nat. Phys. 5, 438 (2009).
http://dx.doi.org/10.1038/nphys1270
3.
3. L. A. Wray, S. Y. Xu, Y. Xia, Y. S. Hor, D. Qian, A. V. Fedorov, H. Lin, A. Bansil, R. J. Cava, and M. Z. Hasan, Nat. Phys. 6, 855 (2010).
http://dx.doi.org/10.1038/nphys1762
4.
4. Y. Xia, D. Qian, D. Hsieh, L. Wray, A. Pal, H. Lin, A. Bansil, D. Grauer, Y. S. Hor, R. J. Cava, and M. Z. Hasan, Nat. Phys. 5, 398 (2009).
http://dx.doi.org/10.1038/nphys1274
5.
5. D. Kong, W. Dang, J. J. Cha, H. Li, S. Meister, H. Peng, Z. Liu, and Y. Cui, Nano Lett. 10, 2245 (2010).
http://dx.doi.org/10.1021/nl101260j
6.
6. J. Chen, H. J. Qin, F. Yang, J. Liu, T. Guan, F. M. Qu, G. H. Zhang, J. R. Shi, X. C. Xie, C. L. Yang, K. H. Wu, Y. Q. Li, and L. Lu, Phys. Rev. Lett. 105, 176602 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.176602
7.
7. H. Steinberg, D. R. Gardner, Y. S. Lee, and P. Jarillo-Herrero, Nano Lett. 10, 5032 (2010).
http://dx.doi.org/10.1021/nl1032183
8.
8. J. G. Checkelsky, Y. S. Hor, R. J. Cava, and N. P. Ong, Phys. Rev. Lett. 106, 196801 (2011).
http://dx.doi.org/10.1103/PhysRevLett.106.196801
9.
9. A. Saji, S. Ampili, S. Yang, K. J. Ku, and M. Elizabeth, J. Phys.: Condens. Matter. 17, 2873 (2005).
http://dx.doi.org/10.1088/0953-8984/17/19/005
10.
10. H. Tang, D. Liang, R. L. J. Qiu, and X. P. A. Gao, ACS Nano 5, 7510 (2011).
http://dx.doi.org/10.1021/nn2024607
11.
11. M. Z. Hossain, S. L. Rumyantsev, K. M. F. Shahil, D. Teweldebrhan, M. Shur, and A. A. Balandin, ACS Nano 5, 2657 (2011).
http://dx.doi.org/10.1021/nn102861d
12.
12. S. Y. F. Zhao, C. Beekman, L. J. Sandilands, J. E. J. Bashucky, D. Kwok, N. Lee, A. D. LaForge, S. W. Cheong, and K. S. Burch, Appl. Phys. Lett. 98, 141911 (2010).
http://dx.doi.org/10.1063/1.3573868
13.
13. H. Peng, K. Lai, D. Kong, S. Meister, Y. Chen, X. L. Qi, S. C. Zhang, Z. X. Shen, and Y. Cui, Nat. Mater. 9, 225 (2010).
http://dx.doi.org/10.1038/nmat2609
14.
14. S. Raghu, S. B. Chung, X.-L. Qi, and S.-C. Zhang, Phys. Rev. Lett. 104, 116401 (2010).
http://dx.doi.org/10.1103/PhysRevLett.104.116401
15.
15. A. Karch, Phys. Rev. B 83, 245432 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.245432
16.
16. D. Y. Lei, J. Li, and H. C. Ong, Appl. Phys. Lett. 91, 021112 (2007).
http://dx.doi.org/10.1063/1.2752770
17.
17. J. Li and H. C. Ong, Appl. Phys. Lett. 92, 121107 (2007).
http://dx.doi.org/10.1063/1.2902323
18.
18. S. Kim, D. H. Shin, C. O. Kim, S. W. Hwang, S.-H. Choi, S. Ji, and J.-Y. Koo, Appl. Phys. Lett. 94, 213113 (2009).
http://dx.doi.org/10.1063/1.3148646
19.
19. S. W. Hwang, D. H. Shin, C. O. Kim, S. H. Hong, M. C. Kim, J. Kim, K. Y. Lim, S. Kim, S.-H. Choi, K. J. Ahn, G. Kim, S. H. Sim, and B. H. Hong, Phys. Rev. Lett. 105, 127403 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.127403
20.
20. V. I. Shtanov and L. V. Yashina, J. Cryst. Growth 311, 3257 (2009).
http://dx.doi.org/10.1016/j.jcrysgro.2009.03.031
21.
21. M. R. Scholz, D. Marchenko, A. Varykhalov, A. Volykhov, L. V. Yashina, and O. Rader, arXiv:1108.1053v1 (to be published).
22.
22. See supplementary material at http://dx.doi.org/10.1063/1.3703320 for the SEM images and AFM images of the thick Bi2Te3 flakes and their corresponding effects on the ZnO ultraviolet emissions. [Supplementary Material]
http://aip.metastore.ingenta.com/content/aip/journal/adva/2/2/10.1063/1.3703320
Loading
/content/aip/journal/adva/2/2/10.1063/1.3703320
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/2/2/10.1063/1.3703320
2012-04-04
2016-12-10

Abstract

It has recently been predicted that the surface plasmons are allowed to exist on the interface between a topological insulator and vacuum. Surface plasmons can be employed to enhance the optical emission from various illuminants. Here, we study the photoluminescenceproperties of the ZnO/Bi2Te3 hybrid structures. Thin flakes of Bi2Te3, a typical three-dimensional topological insulator, were prepared on ZnO crystal surface by mechanical exfoliation method. The ultraviolet emission from ZnO was found to be enhanced by the Bi2Te3 thin flakes, which was attributed to the surface plasmon – photon coupling at the Bi2Te3/ZnO interface.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/2/2/1.3703320.html;jsessionid=QQW0QPXgEDP5tK2IeFeN77nM.x-aip-live-06?itemId=/content/aip/journal/adva/2/2/10.1063/1.3703320&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/2/2/10.1063/1.3703320&pageURL=http://scitation.aip.org/content/aip/journal/adva/2/2/10.1063/1.3703320'
Right1,Right2,Right3,