Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. A. Parsegian, Nature 221, 844 (1969).
2. G. E. Brown Jr et al., Chem. Rev. 99, 77 (1999).
3. O. Beckstein, K. Tai, and M. S. P. Sansom, J. Am. Chem. Soc. 126, 14694 (2004).
4. A. Miyazawa, Y. Fujiyoshi, and N. Unwin, Nature 423, 949 (2003).
5. T. Ohkubo, T. Konishi, Y. Hattori, H. Kanoh, T. Fujikawa, and K. Kaneko, J. Am. Chem. Soc. 124, 11860 (2002).
6. W. Stumm and J. J. Morgan, Aquatic chemistry: Chemical equilibria and rates in natural waters, 3rd edition, (Wiley-Interscience Publication, 1996), Chapter 9.
7. C. Y. Park, P. A. Fenter, K. L. Nagy, and N. C. Sturchio, Phys. Rev. Lett. 97, 016101 (2006).
8. L. J. Criscenti and D. A. Sverjensky, Amer. J. Sci. 299, 828 (1999).
9. G. E. Brown Jr and G. A. Parks, Inter. Geol. Rev. 43, 963 (2001).
10. G. Bunker, Introduction to XAFS: A practical guide to X-ray absorption fine structure spectroscopy (Cambridge University Press, 2010), pp 835.
11. P. Lagarde, A. Fontaine, D. Raoux, A. Sadoc, and P. Migliardo, J. Chem. Phys. 72, 3061 (1980).
12. P. S. Salmon, G. W. Neilson, and J. E. Enderby, J. Phys. C: Solid State Phys. 21, 1335 (1988).
13. A. Pasquarello et al., Science 291, 856 (2001).
14. M. Benfatto, P. D’Angelo, S. D. Longa, and N. V. Pavel, Phys. Rev. B 65, 174205 (2002).
15. P. R. Smirnov and V. N. Trostin, Russ. J. Gen. Chem. 79, 1591 (2009).
16. P. D’Angelo, A. Di Nola, A. Filipponi, N. V. Pavel, and D. Roccatano, J. Chem. Phys. 100, 985 (1994).
17. R. Beudert, H. Bertagnolli, and M. Zeller, J. Chem. Phys. 106, 8841 (1997).
18. P. D’Angelo, V. Migliorati, and L. Guidoni, Inorg. Chem. 49, 4224 (2010).
19. X. F. Huang, Q. Wang, X. X. Liu, S. H. Yang, C. X. Li, G. Sun, L. Q. Pan, and K. Q. Lu, J. Phys. Chem. C 113, 18768 (2009).
20. L. W. Wang, Q. Wang, C. X. Li, X. J. Niu, G. Sun, and K. Q. Lu, Phys. Rev. B 76, 155437 (2007).
21. M. Newville, B. Ravel, D. Haskel, J. J. Rehr, E. A. Stern, and Y. Yacoby, Phys. B 208&209, 154 (1995).
22. C. R. Natoli, in EXAFS and Near Edge Structure, edited by A. Bianconi et al. (Springer, New York, 1983) p 43.
23. V. Simonet, Y. Calzavara, J. L. Hazemann, R. Argoud, O. Geaymond, and D. Raoux, J. Chem. Phys. 117, 2771 (2002).
24. Y. Marcus, Ion salvation (Wiley-Interscience Publication, 1985) pp 107108.
25. S. F. Cheah, G. E. Brown Jr, and G. A. Parks, J. Colloid Interface Sci. 208, 110 (1998).
26. L. S. Kau, D. J. Spira-Solomon, J. E. Penner-Hahn, K. O. Hodgson, and E. I. Solomon, J. Am. Chem. Soc. 109, 6433 (1987).
27. X. X. Liu, Q. Wang, X. F. Huang, S. H. Yang, C. X. Li, X. J. Niu, Q. F. Shi, G. Sun, and K. Q. Lu, J. Phys. Chem. B 114, 4145 (2010).
28. M. J. Yu, W. S. Chu, X. Chen, and Z. Y. Wu, J. Phys: Conf. Series 190, 012060 (2009).
29. A. Fontaine, P. Lagarde, D. Raoux, M. P. Fontana, G. Maisano, P. Migliardo, and F. Wanderlingh, Phys. Rev. Lett. 41, 504 (1978).
30. P. Lagarde, A. Fontaine, D. Raoux, A. Sadoc, and P. Migliardo, J. Chem. Phys. 72, 3061 (1980).
31. M. Iwamoto, H. Yahiro, K. Tanda, N. Mizuno, Y. Mine, and S. Kagawa, J. Phys. Chem. 95, 3727 (1991).
32. G. T. Palomino, P. Fisicaro, S. Bordiga, A. Zecchina, E. Giamello, and C. Lamberit, J. Phys. Chem. B 104, 4064 (2000).
33. C. M. Chanquía, L. Andrini, J. D. Fernández, M. E. Crivello, F. G. Requejo, E. R. Herrero, and G. A. Eimer, J. Phys. Chem. C 114, 12221 (2010).
34. Y. Kuroda, Y. Yoshikawa, S. Konno, H. Hamano, H. Maeda, R. Kumashiro, and M. Nagao, J. Phys. Chem. 99, 10621 (1995).
35. See supplemental material at for explanation of data treatment, estimation of water layer thickness, 3 tables showing the analysis results of EXAFS data, and 4 figures illustrating the adsorption-desorption isotherm, the virtual cluster of 550 water molecules plus 10 Cu2+ ions and 20 Br1− ions, and EXAFS profiles. [Supplementary Material]

Data & Media loading...


Article metrics loading...



Resolution of the atomistic and electronic details about the coordination structure variation of hydrated ions in the interfacial water is still a tough challenge, which is, however, essentially important for the understanding of ion adsorption, permeation and other similar processes in aqueous solutions. Here we report the tracing of coordination structure variation for hydrated Cu2+/Br1- ions traversing the interfacial water in Vycor mesopores (ϕ = 7.6 nm) by employing both X-ray absorption near edge structure and extended X-ray absorption fine structure spectroscopies. By controlled desorption/adsorption of water, the filling fraction of the mesopores, thus the water layer thickness, can be adjusted, which in turn effects the variation of coordination structure of the ions therein. It is found that both Cu2+ and Br1- ions prefer staying exclusively in the core water, and in this circumstance no ion pairs have been detected in the solution of concentrations up to 1.0 M. Following capillary decondensation occurring at a filling fraction of ∼35% which corresponds to a water layer of about three monolayers, Br1- ions begin immediately to reconstruct their first coordination shell, characterized by ionic dehydration, shrinkage of ion-water bond length, and formation of ion pairs. In contrast, Cu2+ ions can retain a bulk-like coordination structure till being driven to bond directly to the pore surface when the filling fraction is below 20%. At the final stage of dehydration via thermal vacuum treatment at 110°C, Cu2+ ions can be completely reduced to the Cu1+ state, and recover at room temperature only when the filling fraction is above 14%. These results may be inspirable for the investigation of similar problems concerning hydrated ions in water solution under different confining conditions.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd