1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
DNA-decorated carbon nanotube-based FETs as ultrasensitive chemical sensors: Discrimination of homologues, structural isomers, and optical isomers
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/2/2/10.1063/1.4705394
1.
1.S. H. Chen, L. Liu, X. Chu, Y. Zhang, E. Fratini, P. Baglioni, A. Faraone, and E. Mamontov, J Chem Phys 125, 171103 (2006).
http://dx.doi.org/10.1063/1.2372491
2.
2.S. Sen, D. Andreatta, S. Y. Ponomarev, D. L. Beveridge, and M. A. Berg, J Am Chem Soc 131, 172435 (2009).
http://dx.doi.org/10.1021/ja805405a
3.
3.T. Elsaesser, Biol Chem 390, 112532 (2009).
http://dx.doi.org/10.1515/BC.2009.126
4.
4.M. Feig and B. M. Pettitt, Biophys J 77, 176981 (1999).
http://dx.doi.org/10.1016/S0006-3495(99)77023-2
5.
5.C. K. Materese, A. Savelyev, and G. A. Papoian, J Am Chem Soc 131, 1500513 (2009).
http://dx.doi.org/10.1021/ja905376q
6.
6.M. R. Gill, J. Garcia-Lara, S. J. Foster, C. Smythe, G. Battaglia, and J. A. Thomas, Nature Chemistry 1, 662667 (2009).
http://dx.doi.org/10.1038/nchem.406
7.
7.N. Z. Lu, S. E. Wardell, K. L. Burnstein, D. Defranco, P. J. Fuller, V. Giguere, R. B. Hochberg, L. McKay, J. M. Renoir, N. L. Weigel, E. M. Wilson, D. P. McDonnell, and J. A. Cidlowski, Pharmacol Rev 58, 78297 (2006).
http://dx.doi.org/10.1124/pr.58.4.9
8.
8.T. Kino, Y. A. Su, and G. P. Chrousos, Cell Mol Life Sci 66, 343548 (2009).
http://dx.doi.org/10.1007/s00018-009-0098-z
9.
9.T. Hu and B. I. Shklovskii, Phys Rev E Stat Nonlin Soft Matter Phys 76, 051909 (2007).
http://dx.doi.org/10.1103/PhysRevE.76.051909
10.
10.U. Kolthur-Seetharam, M. M. Pradeepa, N. Gupta, R. Narayanaswamy, and M. R. Rao, J Histochem Cytochem 57, 95162 (2009).
http://dx.doi.org/10.1369/jhc.2009.953414
11.
11.A. Lachish-Zalait, C. K. Lau, B. Fichtman, E. Zimmerman, A. Harel, M. R. Gaylord, D. J. Forbes, and M. Elbaum, Traffic 10, 141428 (2009).
http://dx.doi.org/10.1111/j.1600-0854.2009.00968.x
12.
12.J. Zeng, X. Q. Cao, H. Zhao, and H. Yan, Phys Rev E Stat Nonlin Soft Matter Phys 80, 041917 (2009).
http://dx.doi.org/10.1103/PhysRevE.80.041917
13.
13.S. Hu, Z. Xie, A. Onishi, X. Yu, L. Jiang, J. Lin, H. S. Rho, C. Woodard, H. Wang, J. S. Jeong, S. Long, X. He, H. Wade, S. Blackshaw, J. Qian, and H. Zhu, Cell 139, 61022 (2009).
http://dx.doi.org/10.1016/j.cell.2009.08.037
14.
14.M. Wanunu, J. Sutin, and A. Meller, Nano Lett 9, 3498502 (2009).
http://dx.doi.org/10.1021/nl901691v
15.
15.L. J. Kricka and P. Fortina, Clin Chem 55, 67083 (2009).
http://dx.doi.org/10.1373/clinchem.2008.116152
16.
16.E. P. Mimitou and L. S. Symington, DNA Repair (Amst) 8, 98395 (2009).
http://dx.doi.org/10.1016/j.dnarep.2009.04.017
17.
17.L. B. Williams, J. White, and J. S. Kauer, Chem Senses 31, A47 (2006).
18.
18.J. White, K. Truesdell, L. B. Williams, M. S. Atkisson, and J. S. Kauer, PLoS Biol 6, e9 (2008).
http://dx.doi.org/10.1371/journal.pbio.0060009
19.
19.D. E. Johnston, M. F. Islam, A. G. Yodh, and A. T. Johnson, Nat Mater 4, 58992 (2005).
http://dx.doi.org/10.1038/nmat1427
20.
20.H. R. Byon, S. Kim, and H. C. Choi, Nano 3, 415431 (2008).
http://dx.doi.org/10.1142/S1793292008001404
21.
21.C. Staii, A. T. Johnson, Jr., M. Chen, and A. Gelperin, Nano Lett 5, 17748 (2005).
http://dx.doi.org/10.1021/nl051261f
22.
22.A. T. Johnson, S. M. Khamis, G. Preti, J. Kwak, and A. Gelperin, IEEE Sensors J 10, 159166 (2010).
http://dx.doi.org/10.1109/JSEN.2009.2035670
23.
23.S. Kim, T. G. Kim, H. R. Byon, H. J. Shin, C. Ban, and H. C. Choi, J Phys Chem B 113, 121648 (2009).
http://dx.doi.org/10.1021/jp9063559
24.
24.R. R. Johnson, A. Kohlmeyer, A. T. Johnson, and M. L. Klein, Nano Lett 9, 53741 (2009).
http://dx.doi.org/10.1021/nl802645d
25.
25.P. Bondavalli, P. Legagneux, and D. Pribat, Sensors and Actuators B-Chemical 140, 304318 (2009).
http://dx.doi.org/10.1016/j.snb.2009.04.025
26.
26.A. D. Wilson and M. Baietto, Sensors 9, 50995148 (2009).
http://dx.doi.org/10.3390/s90705099
27.
27.C. Linster, B. A. Johnson, E. Yue, A. Morse, Z. Xu, E. E. Hingco, Y. Choi, M. Choi, A. Messiha, and M. Leon, J Neurosci 21, 983743 (2001).
28.
28.B. Slotnick, Chem Senses 32, 721725 (2007).
http://dx.doi.org/10.1093/chemse/bjm039
29.
29.T. Clarin, S. Sandhu, and R. Apfelbach, Behav Brain Res 206, 22935 (2010).
http://dx.doi.org/10.1016/j.bbr.2009.09.022
30.
30.J. Ruta, C. Ravelet, I. Baussanne, J. L. Decout, and E. Peyrin, Anal Chem 79, 47169 (2007).
http://dx.doi.org/10.1021/ac070469d
31.
31.C. Xu, S. C. Ng, and H. S. Chan, Langmuir 24, 911824 (2008).
http://dx.doi.org/10.1021/la800761h
32.
32.D. Vardanega, F. Picaud, and C. Girardet, J Chem Phys 130, 114709 (2009).
http://dx.doi.org/10.1063/1.3086042
33.
33.P. Kurzawski, V. Schurig, and A. Hierlemann, Anal Chem 81, 935364 (2009).
http://dx.doi.org/10.1021/ac9017007
34.
34.B. B. Prasad, R. Madhuri, M. P. Tiwari, and P. S. Sharma, Talanta 81, 18796 (2010).
http://dx.doi.org/10.1016/j.talanta.2009.11.055
35.
35.L. Torsi, G. M. Farinola, F. Marinelli, M. C. Tanese, O. H. Omar, L. Valli, F. Babudri, F. Palimsano, P. G. Zambonin, and F. Naso, Nature Materials 7, 412417 (2008).
http://dx.doi.org/10.1038/nmat2167
36.
36.S. M. Khamis, R. A. Jones, and A. T. C. Johnson, AIP Advances 1, 022106 (2011).
http://dx.doi.org/10.1063/1.3582820
37.
37.S. M. Khamis, R. R. Johnson, Z. Luo, and A. T. C. Johnson, Journal of Physics and Chemistry of Solids 71, 476479 (2010).
http://dx.doi.org/10.1016/j.jpcs.2009.12.015
38.
38.J. E. White, L. B. Williams, M. S. Atkisson, and J. S. Kauer, Assoc Chemoreception Sciences XXVI Annual Meeting Abstracts, 32 (2004).
39.
39.J. E. White and J. S. Kauer, US Patent App. 2004/0101851 (2004).
40.
40.S. A. Khamis, R. R. Johnson, Z. T. Luo, and A. T. C. Johnson, J Physics Chem Solids 71, 476479 (2010).
http://dx.doi.org/10.1016/j.jpcs.2009.12.015
41.
41.M. Radosavljevic, M. Freitag, K. V. Thadani, and A. T. Johnson, Nano Letters 2, 761764 (2002).
http://dx.doi.org/10.1021/nl025584c
42.
42.Y. P. Dan, Y. Y. Cao, T. E. Mallouk, A. T. Johnson, and S. Evoy, Sensors Actuators B-Chemical 125, 5559 (2007).
http://dx.doi.org/10.1016/j.snb.2007.01.042
43.
43.Y. Dan, Y. Cao, T. E. Mallouk, S. Evoy, and A. T. Johnson, Nanotechnology 20, 434014 (2009).
http://dx.doi.org/10.1088/0957-4484/20/43/434014
44.
44.M. Gallagher, C. J. Wysocki, J. J. Leyden, A. I. Spielman, X. Sun, and G. Preti, Br J Dermatol 159, 78091 (2008).
http://dx.doi.org/10.1111/j.1365-2133.2008.08748.x
45.
45.G. Preti, E. Thaler, C. W. Hanson, M. Troy, J. Eades, and A. Gelperin, J Chromatogr B Analyt Technol Biomed Life Sci 877, 20118 (2009).
http://dx.doi.org/10.1016/j.jchromb.2009.05.028
46.
46.C. S. Sell, Angew Chem Int Ed Engl 45, 625461 (2006).
http://dx.doi.org/10.1002/anie.200600782
47.
47.R. Bentley, Chem Rev 106, 4099112 (2006).
http://dx.doi.org/10.1021/cr050049t
48.
48.R. R. Johnson, A. T. C. Johnson, and M. L. Klein, Nano Letters 8, 6975 (2008).
http://dx.doi.org/10.1021/nl071909j
49.
49.R. R. Johnson, A. T. Johnson, and M. L. Klein, Small 6, 3134 (2010).
http://dx.doi.org/10.1002/smll.200901481
50.
50.R. R. Johnson, A. Kohlmeyer, A. T. C. Johnson, and M. L. Klein, Nano Letters 9, 537541 (2009).
http://dx.doi.org/10.1021/nl802645d
51.
51.B. R. Goldsmith, J. J. Mitala, J. Josue, A. Castro, M. B. Lerner, T. H. Bayburt, S. M. Khamis, R. A. Jones, J. G. Brand, S. G. Sligar, C. W. Luetje, A. Gelperin, P. A. Rhodes, B. Discher, and A. T. C. Johnson, ACS Nano 5, 54085416 (2011).
http://dx.doi.org/10.1021/nn200489j
52.
52.J. C. Brookes, A. P. Horsfield, and A. M. Stoneham, J R Soc Interface 6, 7586 (2009).
http://dx.doi.org/10.1098/rsif.2008.0165
53.
53.M. Laska and G. M. Shepherd, Neuroscience 144, 295301 (2007).
http://dx.doi.org/10.1016/j.neuroscience.2006.08.063
54.
54.J. J. Hopfield, Proc Natl Acad Sci U S A 79, 25548 (1982).
http://dx.doi.org/10.1073/pnas.79.8.2554
55.
55.X. He, X. Cui, M. S. Li, L. L. Lin, X. H. Liu, and X. M. Feng, Tetrahedon Lett 50, 58535856 (2009).
http://dx.doi.org/10.1016/j.tetlet.2009.08.006
56.
56.A. Henning and S. Matile, Chirality 21, 14551 (2009).
http://dx.doi.org/10.1002/chir.20597
57.
57.H. Liu, L. Xu, M. Zhao, W. Liu, C. Zhang, and S. Zhou, Toxicology 261, 11925 (2009).
http://dx.doi.org/10.1016/j.tox.2009.05.002
58.
58.J. K. Stanley and B. W. Brooks, Integr Environ Assess Manag 5, 36473 (2009).
http://dx.doi.org/10.1897/IEAM_2008-076.1
59.
59.J. Ye, M. Zhao, J. Liu, and W. Liu, Environ Pollut 158, 237183 (2010s).
http://dx.doi.org/10.1016/j.envpol.2010.03.014
60.
60.R. Corradini, S. Sforza, T. Tedeschi, and R. Marchelli, Chirality 19, 26994 (2007).
http://dx.doi.org/10.1002/chir.20372
61.
61.H. Gan, K. Tang, T. Sun, M. Hirtz, Y. Li, L. Chi, S. Butz, and H. Fuchs, Angew Chem Int Ed Engl 48, 52826 (2009).
http://dx.doi.org/10.1002/anie.200806295
62.
62.T. Sivaleela, M. R. Kumar, S. Prabhakar, G. Bhaskar, and M. Vairamani, Rapid Commun Mass Spectrom 22, 20410 (2008).
http://dx.doi.org/10.1002/rcm.3344
63.
63.R. R. Johnson, A. T. Johnson, and M. L. Klein, Nano Lett 8, 6975 (2008).
http://dx.doi.org/10.1021/nl071909j
64.
64.R. R. Johnson, A. T. Johnson, and M. L. Klein, Small 6, 314 (2010).
http://dx.doi.org/10.1002/smll.200901481
65.
65.X.-N. Zeng, J. J. Leyden, J. G. Brand, A. I. Spielman, K. J. McGinley, and G. Preti, J Chem Ecol 18, 10391055 (1992).
http://dx.doi.org/10.1007/BF00980061
66.
66.A. Natsch, F. Kuhn, and J. M. Tiercy, J Chem Ecol 36, 83746 (2010).
http://dx.doi.org/10.1007/s10886-010-9826-y
67.
67.G. Preti and J. J. Leyden, J Invest Dermatol 130, 3446 (2010).
http://dx.doi.org/10.1038/jid.2009.396
68.
68.A. Martin, M. Saathoff, F. Kuhn, H. Max, L. Terstegen, and A. Natsch, J Invest Dermatol 130, 52940 (2010).
http://dx.doi.org/10.1038/jid.2009.254
69.
69.U. F. Engelke, A. Tangerman, M. A. Willemsen, D. Moskau, S. Loss, S. H. Mudd, and R. A. Wevers, NMR Biomed 18, 3316 (2005).
http://dx.doi.org/10.1002/nbm.966
70.
70.A. G. Singer, G. K. Beauchamp, and K. Yamazaki, Proc Natl Acad Sci U S A 94, 22104 (1997).
http://dx.doi.org/10.1073/pnas.94.6.2210
71.
71.A. Takeuchi, S. Yamamoto, R. Narai, M. Nishida, M. Yashiki, N. Sakui, and A. Namera, Biomed Chromatogr 24, 46571 (2010).
72.
72.X.-N. Zeng, J. J. Leyden, A. I. Spielman, and G. Preti, J Chem Ecol 22, 237257 (1996).
http://dx.doi.org/10.1007/BF02055096
73.
73.G. Preti, M. Gallagher, S. S. Fakharzadeh, C. J. Wysocki, J. Kwak, J. Marmion, H. Ozdener, C. J. Miller, C. D. Schmults, A. I. Spielman, X. M. Sun, and S. Chachkin, Chem Senses 33, S138S139 (2008).
http://aip.metastore.ingenta.com/content/aip/journal/adva/2/2/10.1063/1.4705394
Loading

Figures

Image of FIG. 1.

Click to view

FIG. 1.

(a) Schematic of the DNA-NT vapor sensor. (b) Typical I-VG characteristics for a bare NT FET (black data) and the same device after functionalization with DNA sequence G21, defined in Table I in the main text.

Image of FIG. 2.

Click to view

FIG. 2.

(a) Structures of three homologous carboxylic acids used to elicit responses from DNA-NT sensors. (b) Structures of three aldehydes that were tested. (c) Structures of structural isomers tested against DNA-NT devices.

Image of FIG. 3.

Click to view

FIG. 3.

(a) Responses of DNA-NT sensors coated with Seq. 1 to carboxylic acids with carbon chain lengths from C3 to C8. (b) Responses of DNA-NT sensors coated with Seq. 2 to a series of homologous aldehydes.

Image of FIG. 4.

Click to view

FIG. 4.

(a) DNA-NT based on Seq 1 responds differentially to the straight chain n-hexanoic acid compared to the branched isomers. (b) DNA-NT based on Seq 2 discriminate readily between the two branched isomers down to the lowest tested concentration of roughly 300 ppb.

Image of FIG. 5.

Click to view

FIG. 5.

(a) Structures of the enantiomers of limonene. (b) Structures of the enantiomers of carvone. (c) Structure of dimethyl sulfone, referred to as “DMSO2” in the text.

Image of FIG. 6.

Click to view

FIG. 6.

(a) DNA-NT devices based on Seq 1 readily discriminate between the different enantiomers of limonene. (b) In contrast, almost no differentiation was observed for DNA-NT based on Seq 2. (c, d) DNA-NT based on randomized variants of Seq 1 and Seq 2 (Seq1R1 and Seq 2R2, see Table I) showed strong differentiation between the enantiomers of limonene.

Image of FIG. 7.

Click to view

FIG. 7.

(a) DNA-NT based on Seq 1 discriminates between the enantiomers of carvone. (b) Identical devices also respond upon exposure to 25 ppb of dimethylsulfone, a compound that is odorless to humans.

Image of FIG. 8.

Click to view

FIG. 8.

A large number of DNA-NT sensor responses demonstrating how responses vary with the DNA sequence. Red shades denote positive changes in (normalized) conductance while blue shades denote negative changes in conductance.

Tables

Generic image for table

Click to view

Table I.

Nucleotide sequences that were studied in the experiments described here. The naming conventions are used in Figure 8 below. “Seq 2 Soup” consists of a mixture of single nucleotides in the same relative concentrations as found in Seq 2. Seq 1RNA and Seq 2 RNA are RNA molecules.

Loading

Article metrics loading...

/content/aip/journal/adva/2/2/10.1063/1.4705394
2012-04-17
2014-04-20

Abstract

We have explored the abilities of all-electronic DNA-carbon nanotube (DNA-NT) vapor sensors to discriminate very similar classes of molecules. We screened hundreds of DNA-NT devices against a panel of compounds chosen because of their similarities. We demonstrated that DNA-NT vapor sensors readily discriminate between series of chemical homologues that differ by single methyl groups. DNA-NT devices also discriminate among structural isomers and optical isomers, a trait common in biological olfactory systems, but only recently demonstrated for electronic FET based chemical sensors.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/2/2/1.4705394.html;jsessionid=5gbnji2qas2sg.x-aip-live-03?itemId=/content/aip/journal/adva/2/2/10.1063/1.4705394&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: DNA-decorated carbon nanotube-based FETs as ultrasensitive chemical sensors: Discrimination of homologues, structural isomers, and optical isomers
http://aip.metastore.ingenta.com/content/aip/journal/adva/2/2/10.1063/1.4705394
10.1063/1.4705394
SEARCH_EXPAND_ITEM