Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/2/2/10.1063/1.4705398
1.
1.E. J. Nowak, “Maintaining the benefits of CMOS scaling when scaling bogs down,” IBM J. Res. Develop 46, 169 (2002).
http://dx.doi.org/10.1147/rd.462.0169
2.
2.M. Bruel, “Silicon on insulator material technology,” Electron. Lett. 31, 1201 (1995).
http://dx.doi.org/10.1049/el:19950805
3.
3.D. Hisamoto, W. C. Lee, J. Kedzierski, H. Takeuchi, K. Asano, C. Kuo, E. Anderson, T.-J. King, J. Bokor, and C. Hu, “FinFET-a self-aligned double-gate MOSFET scalable to 20 nm,” IEEE Trans. Electron Devices 47, 2320 (2000).
http://dx.doi.org/10.1109/16.887014
4.
4.H. T. Ng, J. Han, T. Yamada, P. Nguyen, Y. Chen, and M. Meyyappan, “Single crystal nanowire vertical surround-gate field-effect transistor,” Nano Lett. 4, 1247 (2004).
http://dx.doi.org/10.1021/nl049461z
5.
5.M. R. William and A. J. A. Gehan, “Silicon surface tunnel transistor,” Appl. Phys. Lett. 67, 494 (1995).
http://dx.doi.org/10.1063/1.114547
6.
6.Q. Zhang, W. Zhao, and A. Seabaugh, “Low-subthreshold-swing tunnel transistors,” IEEE Electron Device Lett. 27, 297 (2006).
http://dx.doi.org/10.1109/LED.2006.871855
7.
7.T. Krishnamohan, D. Kim, S. Raghunathan, and K. Saraswat, “Double-gate strained-Ge heterostructure tunneling FET (TFET) with record high drive currents and <60mV/dec subthreshold slope,” in International Electron Device Meeting.Tech. Dig (IEDM08), (2008).
8.
8.W. Y. Choi, B.-G. Park, J. D. Lee, and T.-J. K. Liu, “Tunneling field-effect transistors (TFETs) with subthreshold swing (SS) less than 60 mV/dec,” IEEE Electron Device Lett. 28, 743 (2007).
http://dx.doi.org/10.1109/LED.2007.901273
9.
9.J. Appenzeller, Y.-M. Lin, J. Knoch, and Ph. Avouris, “Band-to-band tunneling in carbon nanotube field-effect transistors,” Phys. Rev. Lett. 93, 196805 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.196805
10.
10.A. Seabaugh and Q. Zhang, “Low-voltage tunnel transistors for beyond CMOS logic,” Pro. IEEE 98, 2095 (2010).
http://dx.doi.org/10.1109/JPROC.2010.2070470
11.
11.G. Han, P. Guo, Y. Yang, C. Zhan, Q. Zhou, and Y.-C. Yeo, “Silicon-based tunneling field-effect transistor with elevated germanium source formed on (110) silicon substrate,” Appl. Phys. Lett. 98, 153502 (2011).
http://dx.doi.org/10.1063/1.3579242
12.
12.S. H. Kim, H. Kam, C. Hu, and T.-J. K. Liu, “Ge-source tunnel field effect transistors with record high ION/IOFF,” in VLSI Symp. Tech. Dig. (2009).
13.
13.A. Ford, C. Yeung, S. Chuang, H. Kim, E. Plis, S. Krishna, C. Hu, and A. Javey, “Ultrathin body InAs tunneling field-effect transistors on Si substrates,” Appl. Phys. Lett. 98, 113105 (2011).
http://dx.doi.org/10.1063/1.3567021
14.
14.R. Jhaveri, V. Nagavarapu, and J. Woo, “Effect of pocket doping and annealing schemes on the source-pocket tunnel field-effect transistor,” IEEE Trans. Electron Devices 58, 80 (2011).
http://dx.doi.org/10.1109/TED.2010.2089525
15.
15.D. Kazazis, P. Jannaty, A. Zaslavsky, C. Le Royer, C. Tabone, L. Clavelier, and S. Cristoloveanu, “Tunneling field-effect transistor with epitaxial junction in thin germanium-on-insulator,” Appl. Phys. Lett. 94, 263508 (2009).
http://dx.doi.org/10.1063/1.3168646
16.
16.H. Zhao, Y. Chen, Y. Wang, F. Zhou, F. Xue, and J. Lee, “In0.7Ga0.3As tunneling field-effect transistors with an Ion of 50 μA/μm and a subthreshold swing of 86 mV/dec using HfO2 gate oxide,” IEEE Electron Device Lett. 31, 1392 (2010).
http://dx.doi.org/10.1109/LED.2010.2074178
17.
17.Y. Yoon and S. Salahuddin, “Inverse temperature dependence of subthreshold slope in graphene nanoribbon tunneling transistors,” Appl. Phys. Lett. 96, 013510 (2010).
http://dx.doi.org/10.1063/1.3280379
18.
18.N. Cui, R. Liang, and J. Xu, “Heteromaterial gate tunnel field effect transistor with lateral energy band profile modulation,” Appl. Phys. Lett. 98, 142105 (2011).
http://dx.doi.org/10.1063/1.3574363
19.
19.Sentaurus User's Manual, Synopsys, Inc. Mountain View, CA, 2010. v. 2010.03.
20.
20.E. Kane, “Theory of tunneling,” J. Appl. Phys. 32, 83 (1960).
http://dx.doi.org/10.1063/1.1735965
21.
21.R. B. Fair and H. W. Wivell, “Zener and avalanche breakdown in As-implanted low-voltage Si n-p junctions,” IEEE Trans. Electron Devices 23, 512 (1976).
http://dx.doi.org/10.1109/T-ED.1976.18438
22.
22.M. Pawlak, A. Lauwers, T. Janssens, K. Anil, K. Opsomer, K. Maex, A. Vantomme, and J. Kittl, “Modulation of the workfunction of Ni fully silicided gates by doping: dielectric and silicide phase effects,” Electron Device Lett. 27, 99 (2006).
http://dx.doi.org/10.1109/LED.2005.862677
23.
23.T.-J. King, J. Pfiester, and K. C. Saraswat, “A variable-work-function polycrystalline-Si1-xGex gate material for submicrometer CMOS technologies,” IEEE Electron Device Lett. 12, 533 (1991).
http://dx.doi.org/10.1109/55.119180
24.
24.X. Zhou, “Exploring the novel characteristics of hetero-material gate field-effect transistors (HMGFET's) with gate-material engineering,” IEEE Trans. Electron Devices 47, 113 (2000).
http://dx.doi.org/10.1109/16.817576
25.
25.C. Sandow, J. Knoch, C. Urban, Q.-T. Zhao, and S. Mantl, “Impact of electrostatics and doping concentration on the performance of silicon tunnel field-effect transistors,” Solid State Electron. 53, 1126 (2009).
http://dx.doi.org/10.1016/j.sse.2009.05.009
26.
26.K. Boucart and A. Ionescu, “A new definition of threshold voltage,” Solid State Electron. 52, 1318 (2008).
http://dx.doi.org/10.1016/j.sse.2008.04.003
27.
27.S. Saurabh and M. J. Kumar, “Novel attributes of a dual material gate nanoscale tunnel field-effect transistor,” IEEE Trans. Electron Devices 58, 404 (2011).
http://dx.doi.org/10.1109/TED.2010.2093142
28.
28.W. Y. Choi and W. Lee, “Hetero-gate-dielectric tunneling field-effect transistors,” IEEE Trans. Electron Devices 57, 2317 (2010).
http://dx.doi.org/10.1109/TED.2010.2052167
29.
29.A. Verhulst, W. Vandenberghe, K. Maex, and G. Groeseneken, “Tunnel field-effect transistor without gate-drain overlap,” Appl. Phys. Lett. 91, 053102 (2007).
http://dx.doi.org/10.1063/1.2757593
http://aip.metastore.ingenta.com/content/aip/journal/adva/2/2/10.1063/1.4705398
Loading
/content/aip/journal/adva/2/2/10.1063/1.4705398
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/2/2/10.1063/1.4705398
2012-04-17
2016-12-05

Abstract

Choosing novel materials and structures is important for enhancing the on-state current in tunnel field-effect transistors (TFETs). In this paper, we reveal that the on-state performance of TFETs is mainly determined by the energy band profile of the channel. According to this interpretation, we present a new concept of energy band profile modulation (BPM) achieved with gate structure engineering. It is believed that this approach can be used to suppress the ambipolar effect. Based on this method, a Si TFET device with a symmetrical tri-material-gate (TMG) structure is proposed. Two-dimensional numerical simulations demonstrated that the special band profile in this device can boost on-state performance, and it also suppresses the off-state current induced by the ambipolar effect. These unique advantages are maintained over a wide range of gate lengths and supply voltages. The BPM concept can serve as a guideline for improving the performance of nanoscale TFET devices.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/2/2/1.4705398.html;jsessionid=IIJzqRjb1uUoAiHkmxMB25X0.x-aip-live-03?itemId=/content/aip/journal/adva/2/2/10.1063/1.4705398&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/2/2/10.1063/1.4705398&pageURL=http://scitation.aip.org/content/aip/journal/adva/2/2/10.1063/1.4705398'
Right1,Right2,Right3,