Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. J. Wang, J. B. Neaton, H. Zheng, V. Nagarajan, S. B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D. G. Schlom, U. V. Waghmare, N. A. Spaldin, K. M. Rabe, M. Wuttig, and R. Ramesh, Science 299, 1719 (2003).
2. N. Hur, S. Park, P. A. Sharma, J. S. Ahn, S. Guha, and S-W. Cheong, Nature 429, 392 (2004).
3. S.-W. Cheong and M. Mostovoy, Nature Mater. 6, 13 (2007).
4. R. Ramesh and N. A. Spaldin, Nature Mater. 6, 21 (2007).
5. Y. Kitagawa, Y. Hiraoka, T. Honda, T. Ishikura, H. Nakamura, and T Kimura, Nature Mater. 9, 797 (2010).
6. P. Ghosez and J.-M. Triscone, Nature Mater. 10, 269 (2011).
7. K. Takata, M. Azuma, Y. Shimakawa, and M. Takano, J. Jpn. Soc. Powder and Powder Metal. 52, 913 (2005).
8. M. Azuma, K. Takata, T. Saito, S. Ishiwata, Y. Shimakawa, and M. Takano, J. Am. Chem. Soc. 127, 8889 (2005).
9. M. Sakai, A. Masuno, D. Kan, M. Hashisaka, K. Takata, M. Azuma, M. Takano, and Y. Shimakawa, Appl. Phys. Lett. 90, 072903 (2007).
10. P. Padhan, P. LeClair, A. Gupta, and G. Srinivasan, J. Phys.: Condens. Matter 20, 355003 (2008).
11. Y. Du, Z. X. Cheng, X. L. Wang, P. Liu, and S. X. Dou, J. Appl. Phys. 109, 07B507 (2011).
12. M. N. Iliev, P. Padhan, and A. Gupta, Phys. Rev. B 77, 172303 (2008).
13. P. Padhan, P. LeClair, A. Gupta, M. A. Subramanian, and G. Srinivasan, J. Phys.: Condens. Matter 21, 306004 (2009).
14. R. Seshadri and N. A. Hill, Chem. Mater. 13, 2892 (2001).
15. P. Ravindran, R. Vidya, A. Kjekshus, and H. Fjellvåg, Phys. Rev. B 74, 224412 (2006).
16. S. J. Clark and J. Robertson, Appl. Phys. Lett. 90, 132903 (2007).
17. K. Liu, H. Fan, P. Ren, and C. Yang, J. Alloys Compd. 509, 1901 (2011).
18. Y. Sun, Z.-F. Huang, H.-G. Fan, X. Ming, C.-Z. Wang, and G. Chen, Acta Phys. Sin. 58, 193 (2009). (in Chinese)
19. Y. Shimakawa, D. Kan, M. Kawai, M. Sakai, S. Inoue, M. Azuma, S. Kimurai, and O. Sakata, Jpn. J. Appl. Phys. 46, L845 (2007).
20. Y. Uratani, T. Shishidou, F. Ishii, and T. Oguchi, Physica B 383, 9 (2006).
21. A. Ciucivara, B. Sahu, and L. Kleinman, Phys. Rev. B 76, 064412 (2007).
22. K. Dewhurst, S. Sharma, L. Nordström, F. Cricchio, F. Bultmark, and H. Gross, ELK, version 1.2.20, a package of ab initio programs, 2011, see
23. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
24. S. F. Matara, M. A. Subramanian, A. Villesuzanne, V. Eyert, and M.-H. Whangbo, J. Magn. Magn. Mater. 308, 116 (2007).
25. J. M. Rondinelli, A. S. Eidelson, and N. A. Spaldin, Phys. Rev. B 79, 205119 (2009).
26. S. Lv, H. Li, X. Liu, D. Han, Z. Wu, and J. Meng, J. Phys. Chem. C 114, 16710 (2010).
27. P. Kurz, G. Bihlmayer, and S. Blügel, J. Phys.: Condens. Matter 14, 6353 (2002).
28. A. H. Morrish, The Physical Principles of Magnetism (John Wiley & Sons, New York, London, Sydney, 1965).
29. P. Baettig, C. Ederer, and N. A. Spaldin, Phys. Rev. B 72, 214105 (2005).
30. T. Jia, H. Wu, G. Zhang, X. Zhang, Y. Guo, Z. Zeng, and H.-Q. Lin, Phys. Rev. B 83, 174433 (2011).
31. K. Momma and F. Izumi, VESTA, version 2.0.0, a three-dimensional visualization system for electronic and structural analysis, 2010, see
32. K. Momma and F. Izumi, J. Appl. Crystallogr. 41, 653 (2008).

Data & Media loading...


Article metrics loading...



Using the full-potential linearised augmented-plane wave (FP-LAPW) method based on density functional theory (DFT), we have investigated the electronic structures, the magnetic behavior, and the ferroelectric origin of multiferroic Bi2NiMnO6. The calculated ferromagneticCurie temperature of Bi2NiMnO6 is very sensitive to the Mn4+—O2-—Ni2+ length. When average Mn4+—O2-—Ni2+ length increases from 3.82 to 4.05 Å, the Curie temperature increases from 179 to 295 K. The Mn4+—O2-—Ni2+superexchange interaction due to the virtual hopping of electrons from O-2p filled states to Mn-/Ni-3d empty states is enhanced when the band gap formed by crystal-field splitting decreases, thus the effective exchange parameters and Curie temperature increase as Mn4+—O2-—Ni2+ length increases. The ferroelectric distortion in Bi2NiMnO6 is directly from the hybridization of Bi-6p and O-2p states. The role of Bi-6s 2 lone pairs electrons may be that hybridized O-2p with Bi-6s orbitals may be more appropriate in compatible symmetry with Bi-6p orbital than O-2p orbital only. Furthermore, the route of ferroelectric distortion in Bi2NiMnO6 from paraelectric P21/n phase to ferroelectricC2 phase is discussed.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd