1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
oa
Density functional investigations on electronic structures, magnetic ordering and ferroelectric phase transition in multiferroic Bi2NiMnO6
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/2/2/10.1063/1.4709401
1.
1. J. Wang, J. B. Neaton, H. Zheng, V. Nagarajan, S. B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D. G. Schlom, U. V. Waghmare, N. A. Spaldin, K. M. Rabe, M. Wuttig, and R. Ramesh, Science 299, 1719 (2003).
http://dx.doi.org/10.1126/science.1080615
2.
2. N. Hur, S. Park, P. A. Sharma, J. S. Ahn, S. Guha, and S-W. Cheong, Nature 429, 392 (2004).
http://dx.doi.org/10.1038/nature02572
3.
3. S.-W. Cheong and M. Mostovoy, Nature Mater. 6, 13 (2007).
http://dx.doi.org/10.1038/nmat1804
4.
4. R. Ramesh and N. A. Spaldin, Nature Mater. 6, 21 (2007).
http://dx.doi.org/10.1038/nmat1805
5.
5. Y. Kitagawa, Y. Hiraoka, T. Honda, T. Ishikura, H. Nakamura, and T Kimura, Nature Mater. 9, 797 (2010).
http://dx.doi.org/10.1038/nmat2826
6.
6. P. Ghosez and J.-M. Triscone, Nature Mater. 10, 269 (2011).
http://dx.doi.org/10.1038/nmat3003
7.
7. K. Takata, M. Azuma, Y. Shimakawa, and M. Takano, J. Jpn. Soc. Powder and Powder Metal. 52, 913 (2005).
http://dx.doi.org/10.2497/jjspm.52.913
8.
8. M. Azuma, K. Takata, T. Saito, S. Ishiwata, Y. Shimakawa, and M. Takano, J. Am. Chem. Soc. 127, 8889 (2005).
http://dx.doi.org/10.1021/ja0512576
9.
9. M. Sakai, A. Masuno, D. Kan, M. Hashisaka, K. Takata, M. Azuma, M. Takano, and Y. Shimakawa, Appl. Phys. Lett. 90, 072903 (2007).
http://dx.doi.org/10.1063/1.2539575
10.
10. P. Padhan, P. LeClair, A. Gupta, and G. Srinivasan, J. Phys.: Condens. Matter 20, 355003 (2008).
http://dx.doi.org/10.1088/0953-8984/20/35/355003
11.
11. Y. Du, Z. X. Cheng, X. L. Wang, P. Liu, and S. X. Dou, J. Appl. Phys. 109, 07B507 (2011).
http://dx.doi.org/10.1063/1.3537943
12.
12. M. N. Iliev, P. Padhan, and A. Gupta, Phys. Rev. B 77, 172303 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.172303
13.
13. P. Padhan, P. LeClair, A. Gupta, M. A. Subramanian, and G. Srinivasan, J. Phys.: Condens. Matter 21, 306004 (2009).
http://dx.doi.org/10.1088/0953-8984/21/30/306004
14.
14. R. Seshadri and N. A. Hill, Chem. Mater. 13, 2892 (2001).
http://dx.doi.org/10.1021/cm010090m
15.
15. P. Ravindran, R. Vidya, A. Kjekshus, and H. Fjellvåg, Phys. Rev. B 74, 224412 (2006).
http://dx.doi.org/10.1103/PhysRevB.74.224412
16.
16. S. J. Clark and J. Robertson, Appl. Phys. Lett. 90, 132903 (2007).
http://dx.doi.org/10.1063/1.2716868
17.
17. K. Liu, H. Fan, P. Ren, and C. Yang, J. Alloys Compd. 509, 1901 (2011).
http://dx.doi.org/10.1016/j.jallcom.2010.10.084
18.
18. Y. Sun, Z.-F. Huang, H.-G. Fan, X. Ming, C.-Z. Wang, and G. Chen, Acta Phys. Sin. 58, 193 (2009). (in Chinese)
19.
19. Y. Shimakawa, D. Kan, M. Kawai, M. Sakai, S. Inoue, M. Azuma, S. Kimurai, and O. Sakata, Jpn. J. Appl. Phys. 46, L845 (2007).
http://dx.doi.org/10.1143/JJAP.46.L845
20.
20. Y. Uratani, T. Shishidou, F. Ishii, and T. Oguchi, Physica B 383, 9 (2006).
http://dx.doi.org/10.1016/j.physb.2006.03.035
21.
21. A. Ciucivara, B. Sahu, and L. Kleinman, Phys. Rev. B 76, 064412 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.064412
22.
22. K. Dewhurst, S. Sharma, L. Nordström, F. Cricchio, F. Bultmark, and H. Gross, ELK, version 1.2.20, a package of ab initio programs, 2011, see http://elk.sourceforge.net.
23.
23. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
http://dx.doi.org/10.1103/PhysRevLett.77.3865
24.
24. S. F. Matara, M. A. Subramanian, A. Villesuzanne, V. Eyert, and M.-H. Whangbo, J. Magn. Magn. Mater. 308, 116 (2007).
http://dx.doi.org/10.1016/j.jmmm.2006.05.029
25.
25. J. M. Rondinelli, A. S. Eidelson, and N. A. Spaldin, Phys. Rev. B 79, 205119 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.205119
26.
26. S. Lv, H. Li, X. Liu, D. Han, Z. Wu, and J. Meng, J. Phys. Chem. C 114, 16710 (2010).
http://dx.doi.org/10.1021/jp104617q
27.
27. P. Kurz, G. Bihlmayer, and S. Blügel, J. Phys.: Condens. Matter 14, 6353 (2002).
http://dx.doi.org/10.1088/0953-8984/14/25/305
28.
28. A. H. Morrish, The Physical Principles of Magnetism (John Wiley & Sons, New York, London, Sydney, 1965).
29.
29. P. Baettig, C. Ederer, and N. A. Spaldin, Phys. Rev. B 72, 214105 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.214105
30.
30. T. Jia, H. Wu, G. Zhang, X. Zhang, Y. Guo, Z. Zeng, and H.-Q. Lin, Phys. Rev. B 83, 174433 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.174433
31.
31. K. Momma and F. Izumi, VESTA, version 2.0.0, a three-dimensional visualization system for electronic and structural analysis, 2010, see http://www.geocities.jp/kmo_mma/crystal/en/vesta.html.
32.
32. K. Momma and F. Izumi, J. Appl. Crystallogr. 41, 653 (2008).
http://dx.doi.org/10.1107/S0021889808012016
http://aip.metastore.ingenta.com/content/aip/journal/adva/2/2/10.1063/1.4709401
Loading
/content/aip/journal/adva/2/2/10.1063/1.4709401
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/2/2/10.1063/1.4709401
2012-04-23
2014-10-22

Abstract

Using the full-potential linearised augmented-plane wave (FP-LAPW) method based on density functional theory (DFT), we have investigated the electronic structures, the magnetic behavior, and the ferroelectric origin of multiferroic Bi2NiMnO6. The calculated ferromagneticCurie temperature of Bi2NiMnO6 is very sensitive to the Mn4+—O2-—Ni2+ length. When average Mn4+—O2-—Ni2+ length increases from 3.82 to 4.05 Å, the Curie temperature increases from 179 to 295 K. The Mn4+—O2-—Ni2+superexchange interaction due to the virtual hopping of electrons from O-2p filled states to Mn-/Ni-3d empty states is enhanced when the band gap formed by crystal-field splitting decreases, thus the effective exchange parameters and Curie temperature increase as Mn4+—O2-—Ni2+ length increases. The ferroelectric distortion in Bi2NiMnO6 is directly from the hybridization of Bi-6p and O-2p states. The role of Bi-6s 2 lone pairs electrons may be that hybridized O-2p with Bi-6s orbitals may be more appropriate in compatible symmetry with Bi-6p orbital than O-2p orbital only. Furthermore, the route of ferroelectric distortion in Bi2NiMnO6 from paraelectric P21/n phase to ferroelectricC2 phase is discussed.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/2/2/1.4709401.html;jsessionid=jnrhq9lhek5i.x-aip-live-02?itemId=/content/aip/journal/adva/2/2/10.1063/1.4709401&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Density functional investigations on electronic structures, magnetic ordering and ferroelectric phase transition in multiferroic Bi2NiMnO6
http://aip.metastore.ingenta.com/content/aip/journal/adva/2/2/10.1063/1.4709401
10.1063/1.4709401
SEARCH_EXPAND_ITEM