1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Density functional investigations on electronic structures, magnetic ordering and ferroelectric phase transition in multiferroic Bi2NiMnO6
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/2/2/10.1063/1.4709401
1.
1. J. Wang, J. B. Neaton, H. Zheng, V. Nagarajan, S. B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D. G. Schlom, U. V. Waghmare, N. A. Spaldin, K. M. Rabe, M. Wuttig, and R. Ramesh, Science 299, 1719 (2003).
http://dx.doi.org/10.1126/science.1080615
2.
2. N. Hur, S. Park, P. A. Sharma, J. S. Ahn, S. Guha, and S-W. Cheong, Nature 429, 392 (2004).
http://dx.doi.org/10.1038/nature02572
3.
3. S.-W. Cheong and M. Mostovoy, Nature Mater. 6, 13 (2007).
http://dx.doi.org/10.1038/nmat1804
4.
4. R. Ramesh and N. A. Spaldin, Nature Mater. 6, 21 (2007).
http://dx.doi.org/10.1038/nmat1805
5.
5. Y. Kitagawa, Y. Hiraoka, T. Honda, T. Ishikura, H. Nakamura, and T Kimura, Nature Mater. 9, 797 (2010).
http://dx.doi.org/10.1038/nmat2826
6.
6. P. Ghosez and J.-M. Triscone, Nature Mater. 10, 269 (2011).
http://dx.doi.org/10.1038/nmat3003
7.
7. K. Takata, M. Azuma, Y. Shimakawa, and M. Takano, J. Jpn. Soc. Powder and Powder Metal. 52, 913 (2005).
http://dx.doi.org/10.2497/jjspm.52.913
8.
8. M. Azuma, K. Takata, T. Saito, S. Ishiwata, Y. Shimakawa, and M. Takano, J. Am. Chem. Soc. 127, 8889 (2005).
http://dx.doi.org/10.1021/ja0512576
9.
9. M. Sakai, A. Masuno, D. Kan, M. Hashisaka, K. Takata, M. Azuma, M. Takano, and Y. Shimakawa, Appl. Phys. Lett. 90, 072903 (2007).
http://dx.doi.org/10.1063/1.2539575
10.
10. P. Padhan, P. LeClair, A. Gupta, and G. Srinivasan, J. Phys.: Condens. Matter 20, 355003 (2008).
http://dx.doi.org/10.1088/0953-8984/20/35/355003
11.
11. Y. Du, Z. X. Cheng, X. L. Wang, P. Liu, and S. X. Dou, J. Appl. Phys. 109, 07B507 (2011).
http://dx.doi.org/10.1063/1.3537943
12.
12. M. N. Iliev, P. Padhan, and A. Gupta, Phys. Rev. B 77, 172303 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.172303
13.
13. P. Padhan, P. LeClair, A. Gupta, M. A. Subramanian, and G. Srinivasan, J. Phys.: Condens. Matter 21, 306004 (2009).
http://dx.doi.org/10.1088/0953-8984/21/30/306004
14.
14. R. Seshadri and N. A. Hill, Chem. Mater. 13, 2892 (2001).
http://dx.doi.org/10.1021/cm010090m
15.
15. P. Ravindran, R. Vidya, A. Kjekshus, and H. Fjellvåg, Phys. Rev. B 74, 224412 (2006).
http://dx.doi.org/10.1103/PhysRevB.74.224412
16.
16. S. J. Clark and J. Robertson, Appl. Phys. Lett. 90, 132903 (2007).
http://dx.doi.org/10.1063/1.2716868
17.
17. K. Liu, H. Fan, P. Ren, and C. Yang, J. Alloys Compd. 509, 1901 (2011).
http://dx.doi.org/10.1016/j.jallcom.2010.10.084
18.
18. Y. Sun, Z.-F. Huang, H.-G. Fan, X. Ming, C.-Z. Wang, and G. Chen, Acta Phys. Sin. 58, 193 (2009). (in Chinese)
19.
19. Y. Shimakawa, D. Kan, M. Kawai, M. Sakai, S. Inoue, M. Azuma, S. Kimurai, and O. Sakata, Jpn. J. Appl. Phys. 46, L845 (2007).
http://dx.doi.org/10.1143/JJAP.46.L845
20.
20. Y. Uratani, T. Shishidou, F. Ishii, and T. Oguchi, Physica B 383, 9 (2006).
http://dx.doi.org/10.1016/j.physb.2006.03.035
21.
21. A. Ciucivara, B. Sahu, and L. Kleinman, Phys. Rev. B 76, 064412 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.064412
22.
22. K. Dewhurst, S. Sharma, L. Nordström, F. Cricchio, F. Bultmark, and H. Gross, ELK, version 1.2.20, a package of ab initio programs, 2011, see http://elk.sourceforge.net.
23.
23. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
http://dx.doi.org/10.1103/PhysRevLett.77.3865
24.
24. S. F. Matara, M. A. Subramanian, A. Villesuzanne, V. Eyert, and M.-H. Whangbo, J. Magn. Magn. Mater. 308, 116 (2007).
http://dx.doi.org/10.1016/j.jmmm.2006.05.029
25.
25. J. M. Rondinelli, A. S. Eidelson, and N. A. Spaldin, Phys. Rev. B 79, 205119 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.205119
26.
26. S. Lv, H. Li, X. Liu, D. Han, Z. Wu, and J. Meng, J. Phys. Chem. C 114, 16710 (2010).
http://dx.doi.org/10.1021/jp104617q
27.
27. P. Kurz, G. Bihlmayer, and S. Blügel, J. Phys.: Condens. Matter 14, 6353 (2002).
http://dx.doi.org/10.1088/0953-8984/14/25/305
28.
28. A. H. Morrish, The Physical Principles of Magnetism (John Wiley & Sons, New York, London, Sydney, 1965).
29.
29. P. Baettig, C. Ederer, and N. A. Spaldin, Phys. Rev. B 72, 214105 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.214105
30.
30. T. Jia, H. Wu, G. Zhang, X. Zhang, Y. Guo, Z. Zeng, and H.-Q. Lin, Phys. Rev. B 83, 174433 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.174433
31.
31. K. Momma and F. Izumi, VESTA, version 2.0.0, a three-dimensional visualization system for electronic and structural analysis, 2010, see http://www.geocities.jp/kmo_mma/crystal/en/vesta.html.
32.
32. K. Momma and F. Izumi, J. Appl. Crystallogr. 41, 653 (2008).
http://dx.doi.org/10.1107/S0021889808012016
http://aip.metastore.ingenta.com/content/aip/journal/adva/2/2/10.1063/1.4709401
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

Electronic structures of double perovskite Bi2NiMnO6 in ferromagnetic states. Up panel shows densities of states (DOS) for both C2/m phase (violet solid line) and C2 phase (olive dash line) using assumed and calculated crystal structures, respectively. Down panel shows the densities of states for both P21/n phase (violet line) and C2 phase (olive line) using experimental crystal structures, respectively.

Image of FIG. 2.

Click to view

FIG. 2.

Projected densities of states (PDOS) for Mn-3d and Ni-3d orbitals.

Image of FIG. 3.

Click to view

FIG. 3.

The GGA projected densities of states (DOS) for Ni-3d, Mn-3d, and O-2p of C2 Bi2NiMnO6 in ferromagnetic states (a) and corresponding molecular orbitalalals of Mn4+—O2-—Ni2+ interaction (b). The t 2g and e g states are identified based on our Mn4+—O2-—Ni2+ molecular orbitals as well as the calculated results reported by Uratani et al., [Physica B383, 9 (2006)].

Image of FIG. 4.

Click to view

FIG. 4.

Curie temperature and effective exchange parameters J Ni-Mn obtained from mean field approximation with respect to average Ni-Mn distance.

Image of FIG. 5.

Click to view

FIG. 5.

Band gap of C2 Bi2NiMnO6 as a function of unit cell volume in both ferromagnetic (FM) and ferrimagnetic (FIM) states.

Image of FIG. 6.

Click to view

FIG. 6.

The GGA projected densities of states (PDOS) for Bi-6s, Bi-6p and O-2p states. Red lines (vertical stripes) show the PDOS for centrosymmetric C2/m phase, violet lines show the PDOS for ferroelectric C2 phase. (a) is the interactions of Bi(1)-O(4), (b) is the interactions of Bi(4)-O(1), (c) is the primitive cell of ferroelectric Bi2NiMnO6, the a axis in the primitive cell is equal to the b axis in the unit cell as shown in figure 7.

Image of FIG. 7.

Click to view

FIG. 7.

Schematic of phase transition from paraelectric P21/n phase to ferroelectric C2 phase in double perovskite Bi2NiMnO6. (a) is the paraelectric P21/n phase (only Ni atoms are displayed), the lattice in the blue frame is very close to the centrosymmetric C2/m phase (a = 9.412 Å, b = 5.471 Å, c = 9.587 Å, α = 88.851°, β = 109.508°, γ = 90.953°). (b) is centrosymmetric C2/m phase (a = 9.501 Å, b = 5.418 Å, c = 9.634 Å, α = γ = 90°, β = 107.884°, O atoms are not shown here), the black arrows show the displacement of Bi and Mn atoms along b axis in the unit cell. (c) is the ferroelectric C2 phase.

Loading

Article metrics loading...

/content/aip/journal/adva/2/2/10.1063/1.4709401
2012-04-23
2014-04-20

Abstract

Using the full-potential linearised augmented-plane wave (FP-LAPW) method based on density functional theory (DFT), we have investigated the electronic structures, the magnetic behavior, and the ferroelectric origin of multiferroic Bi2NiMnO6. The calculated ferromagneticCurie temperature of Bi2NiMnO6 is very sensitive to the Mn4+—O2-—Ni2+ length. When average Mn4+—O2-—Ni2+ length increases from 3.82 to 4.05 Å, the Curie temperature increases from 179 to 295 K. The Mn4+—O2-—Ni2+superexchange interaction due to the virtual hopping of electrons from O-2p filled states to Mn-/Ni-3d empty states is enhanced when the band gap formed by crystal-field splitting decreases, thus the effective exchange parameters and Curie temperature increase as Mn4+—O2-—Ni2+ length increases. The ferroelectric distortion in Bi2NiMnO6 is directly from the hybridization of Bi-6p and O-2p states. The role of Bi-6s 2 lone pairs electrons may be that hybridized O-2p with Bi-6s orbitals may be more appropriate in compatible symmetry with Bi-6p orbital than O-2p orbital only. Furthermore, the route of ferroelectric distortion in Bi2NiMnO6 from paraelectric P21/n phase to ferroelectricC2 phase is discussed.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/2/2/1.4709401.html;jsessionid=6ipqndvb9s3qo.x-aip-live-02?itemId=/content/aip/journal/adva/2/2/10.1063/1.4709401&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Density functional investigations on electronic structures, magnetic ordering and ferroelectric phase transition in multiferroic Bi2NiMnO6
http://aip.metastore.ingenta.com/content/aip/journal/adva/2/2/10.1063/1.4709401
10.1063/1.4709401
SEARCH_EXPAND_ITEM