1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
oa
Puzzling phonon dispersion curves and vibrational mode instability in superconducting MgCNi3
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/2/2/10.1063/1.4714366
1.
1. T. He, Q. Huang, A. P. Ramirez, Y. Wang, K. A. Regan, N. Rogado, M. A. Hayward, M. K. Hass, J. S. Slusky, K. Inumara, H. W. Zandbergen, N. P. Ong, and R. J. Cava, “Superconductivity in the non-oxide perovskite MgCNi3,” Nature London 411, 54 (2001).
http://dx.doi.org/10.1038/35075014
2.
2. Y. Kamihara, T. Watanabe, M. Hirano, and H. Hosono, “Iron-Based Layered Superconductor La[O1-xFx]FeAs (x = 0.05−0.12) with Tc = 26 K,” J. am. Chem. Soc. 130, 3296 (2008).
http://dx.doi.org/10.1021/ja800073m
3.
3. M. R. Norman, “High-temperature superconductivity in the iron pnictides,” Phys. 1, 21 (2008).
http://dx.doi.org/10.1103/Physics.1.21
4.
4. D. J. Singh and I. I. Mazin, “Superconductivity and electronic structure of perovskite MgCNi3,” Phys. Rev. B 61, 140507R (2001).
http://dx.doi.org/10.1103/PhysRevB.64.140507
5.
5. A. Yu Ignatov, S. Y. Savrasov, and T. A. Tyson, “Superconductivity near the vibrational-mode instability in MgCNi3,” Phys. Rev. B 68, 220504R (2003).
http://dx.doi.org/10.1103/PhysRevB.68.220504
6.
6. R. A. Heid, B. Renker, H. Schober, P. Adelmann, D. Ernst, and K. P. Bohnan, “Phonon spectrum and soft-mode behavior of MgCNi3,” Phys. Rev. B 69, 092511 (2004).
http://dx.doi.org/10.1103/PhysRevB.69.092511
7.
7. P. K. Jha, “Phonon spectra and vibrational mode instability of MgCNi3,” Phys. Rev. B 72, 214502 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.214502
8.
8. H. Sonker, R. Weht, M. D. Johannes, W. E. Pickkert, and E. Tosatti, “Superconductivity near Ferromagnetism in MgCNi3,” Phys. Rev. Lett. 88, 027001 (2001).
http://dx.doi.org/10.1103/PhysRevLett.88.027001
9.
9. J. H. Shim, S. K. Kown, and B. I. Min, “Electronic structures of antiperovskite superconductors MgXNi3 (X=B, C, and N),” Phys. Rev. B 64, 180510R (2001).
http://dx.doi.org/10.1103/PhysRevB.64.180510
10.
10. A. Yu Ignatov, L. M. Dieng, T. A. Tyson, T. He, and R. J. Cava, “Observation of a low-symmetry crystal structure for superconducting MgCNi3 by Ni K-edge x-ray absorption measurements,” Phys. Rev. B 67, 064509 (2003).
http://dx.doi.org/10.1103/PhysRevB.67.064509
11.
11. P. Diener, P. Rodière, T. Klein, C. Marcenat, J. Kacmarcik, Z. Pribulova, D. J. Jang, H. S. Lee, H. G. Lee, and S. I. Lee, “s-wave superconductivity probed by measuring magnetic penetration depth and lower critical field of MgCNi3 single crystals,” Phys. Rev. B 79, 220508R (2009).
http://dx.doi.org/10.1103/PhysRevB.79.220508
12.
12. O. V. Dolgov, I. I. Mazin, A. A. Golubov, S. Y. Savrasov, and E. G. Maksimov, “Critical Temperature and Enhanced Isotope Effect in the Presence of Paramagnons in Phonon-Mediated Superconductors,” Phys. Rev. Lett. 95, 257003 (2005).
http://dx.doi.org/10.1103/PhysRevLett.95.257003
13.
13. A. Wälte, G. Fuchs, K. H. Müller, A. Handstein, K. Nenkov, V. N. Narozhnyi, S. L. Drechsler, S. Shulga, L. Schultz, and H. Rosner, “Evidence for strong electron-phonon coupling in MgCNi3,” Phys. Rev. B 70, 174503 (2004).
http://dx.doi.org/10.1103/PhysRevB.70.174503
14.
14. H. M. Tütüncü and G. P. Srivastava, “Electronic structure, phonons and electron–phonon interaction in MgXNi3 (X = B, C and N),” J. Phys.: Condens. Matter. 18, 11089 (2006).
http://dx.doi.org/10.1088/0953-8984/18/49/004
15.
15. S. Y. Li, R. Fan, X. H. Chen, C. H. Wang, W. Q. Mo, K. Q. Ruan, Y. M. Xiong, X. G. Luo, H. T. Zhang, L. Li, Z Sun, and L. Z. Cao, “Normal state resistivity, upper critical field, and Hall effect in superconducting perovskite MgCNi3,” Phys. Rev. B 64, 132505 (2001).
http://dx.doi.org/10.1103/PhysRevB.64.132505
16.
16. J. Y. Lin, P. L Ho, H. L. Huang, P. H. Lin, Y. L. Zhang, R. C. Yu, C. Q. Jin, and H. D. Yang, “BCS-like superconductivity in MgCNi3,” Phys. Rev. B 67,052501 (2003).
http://dx.doi.org/10.1103/PhysRevB.67.052501
17.
17. Z. Q. Mao, M. M. Rosario, K. D. Nelson, K. Wu, I. G. Deac, P. Schiffer, Y. Liu, T. He, K. A. Regan, and R. Cava, “Experimental determination of superconducting parameters for the intermetallic perovskite superconductor MgCNi3,” Phys. Rev. B 67, 094502 (2003).
http://dx.doi.org/10.1103/PhysRevB.67.094502
18.
18. J. H. Shim, S. K. Kwon, and B. I. Min, “Magnetic resonance from the interplay of frustration and superconductivity,” Phys. Rev. B 64, 180510 (2010).
19.
19. A. Szajek, “Electronic structure of superconducting non-oxide perovskite MgCNi3,” J. Phys.: Condens. Matter 13, 595 (2001).
http://dx.doi.org/10.1088/0953-8984/13/26/102
20.
20. S. B. Dugdale and T. Jarlborg, “Electronic structure, magnetism, and superconductivity of MgCxNi3,” Phys. Rev. B 64, 100508 (2001).
http://dx.doi.org/10.1103/PhysRevB.64.100508
21.
21. I. Hase, “Ni3AlB: A bridge between superconductivity and ferromagnetism,” Phys. Rev. B 70, 033105 (2004).
http://dx.doi.org/10.1103/PhysRevB.70.033105
22.
22. A. Yu Ignatov, “Relationship between the electronic and local structure in BaPbxBi1−xO3 and Ba1−xKxBiO3 perovskites,” Nucl. Instrum. Methods Phys. Res. A 448, 332 (2000).
http://dx.doi.org/10.1016/S0168-9002(99)00691-9
23.
23. J. B. Boyce, F. G. Bridges, T. C. Clarson, T. H. Geballe, G. G. Li, and A. N. Slright, “Local structure of BaBixPb1-xO3 determined by x-ray-absorption spectroscopy,” Phys. Rev. B 44, 6961 (1991).
http://dx.doi.org/10.1103/PhysRevB.44.6961
24.
24. H. Hong, M. Upton, A. H. Said, H. Lee, D. J. Jang, S. I. Lee, R. Xu, and T. C. Chiang, “Phonon dispersions and anomalies of MgCNi3 single-crystal superconductors determined by inelastic x-ray scattering,” Phys. Rev. B 82, 134535 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.134535
25.
25. P. Giannozzi et al., “QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials,” J. Phys.:Condens. Matter 21, 395502 (2009);
http://dx.doi.org/10.1088/0953-8984/21/39/395502
26.
26. G. W. Bachelet, D. R. Hamann, and M. Schluter, “Pseudopotentials that work: From H to Pu,” Phys. Rev. B 26, 4199 (1982).
http://dx.doi.org/10.1103/PhysRevB.26.4199
27.
27. S. Baroni, S. de Gironcoli, A. dal Corso, and P. Giannozzi, “Phonons and related crystal properties from density-functional perturbation theory,” Rev. Mod. Phys. 73, 515 (2001).
http://dx.doi.org/10.1103/RevModPhys.73.515
28.
28. A. Wälte, G. Fuchs, K. H. Müller, A. Handstein, K. Nenkov, V. N. Narozhnyi, S. L. Drechsler, S. Shulga, L. Schultz, and H. Rosner, “Evidence for strong electron-phonon coupling in MgCNi3,” Phys. Rev. B 70, 174503 (2004).
http://dx.doi.org/10.1103/PhysRevB.70.174503
29.
29. A. Legget, “What DO we know about high Tc?” Nat. Phys. 2, 134 (2006).
http://dx.doi.org/10.1038/nphys254
30.
30. A. Liu, I. Mazin, and J. Kortus, “Beyond Eliashberg Superconductivity in MgB2: Anharmonicity, Two-Phonon Scattering, and Multiple Gaps,” Phys. Rev. Lett. 87, 087005 (1994).
http://dx.doi.org/10.1103/PhysRevLett.87.087005
31.
31. D. P. Young, M. Moldovan, D. D. Craig, and P. W. Adams, “Superconducting properties of MgCNi3 films,” Phys. Rev. B 68, 020501R (2003).
http://dx.doi.org/10.1103/PhysRevB.68.020501
32.
32. M. D. Johannes and W. E. Pickett, “Electronic structure of ZnCNi3,” Phys. Rev. B 70, 060507R (2004).
http://dx.doi.org/10.1103/PhysRevB.70.060507
http://aip.metastore.ingenta.com/content/aip/journal/adva/2/2/10.1063/1.4714366
Loading
/content/aip/journal/adva/2/2/10.1063/1.4714366
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/2/2/10.1063/1.4714366
2012-05-02
2014-10-21

Abstract

A first principles calculation of the lattice dynamical properties of superconducting MgCNi3 has been performed using density functional perturbation theory (DFPT). The calculated phonon dispersion curves and phonondensity of states have been compared with inelastic x-ray scattering (IXS) and inelastic neutron scattering (INS) measurements. We show for the first time that phonon dispersion curves for MgCNi3 in whole Brillouin zone are positive (stable phonon modes) and in good agreement with the experimental data. The phonon DOS shows absence of phonondensity of states at zero energy unlike earlier calculations. There is a good agreement between calculated and experimental electron-phonon parameter and superconducting transition temperature. The Eliasberg function is quantitatively as well as qualitatively different from the phonondensity of states. The lattice specific heat and Debye temperature do not show any anomalous behaviour.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/2/2/1.4714366.html;jsessionid=ako178fq0ksdb.x-aip-live-03?itemId=/content/aip/journal/adva/2/2/10.1063/1.4714366&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Puzzling phonon dispersion curves and vibrational mode instability in superconducting MgCNi3
http://aip.metastore.ingenta.com/content/aip/journal/adva/2/2/10.1063/1.4714366
10.1063/1.4714366
SEARCH_EXPAND_ITEM