Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. T. He, Q. Huang, A. P. Ramirez, Y. Wang, K. A. Regan, N. Rogado, M. A. Hayward, M. K. Hass, J. S. Slusky, K. Inumara, H. W. Zandbergen, N. P. Ong, and R. J. Cava, “Superconductivity in the non-oxide perovskite MgCNi3,” Nature London 411, 54 (2001).
2. Y. Kamihara, T. Watanabe, M. Hirano, and H. Hosono, “Iron-Based Layered Superconductor La[O1-xFx]FeAs (x = 0.05−0.12) with Tc = 26 K,” J. am. Chem. Soc. 130, 3296 (2008).
3. M. R. Norman, “High-temperature superconductivity in the iron pnictides,” Phys. 1, 21 (2008).
4. D. J. Singh and I. I. Mazin, “Superconductivity and electronic structure of perovskite MgCNi3,” Phys. Rev. B 61, 140507R (2001).
5. A. Yu Ignatov, S. Y. Savrasov, and T. A. Tyson, “Superconductivity near the vibrational-mode instability in MgCNi3,” Phys. Rev. B 68, 220504R (2003).
6. R. A. Heid, B. Renker, H. Schober, P. Adelmann, D. Ernst, and K. P. Bohnan, “Phonon spectrum and soft-mode behavior of MgCNi3,” Phys. Rev. B 69, 092511 (2004).
7. P. K. Jha, “Phonon spectra and vibrational mode instability of MgCNi3,” Phys. Rev. B 72, 214502 (2005).
8. H. Sonker, R. Weht, M. D. Johannes, W. E. Pickkert, and E. Tosatti, “Superconductivity near Ferromagnetism in MgCNi3,” Phys. Rev. Lett. 88, 027001 (2001).
9. J. H. Shim, S. K. Kown, and B. I. Min, “Electronic structures of antiperovskite superconductors MgXNi3 (X=B, C, and N),” Phys. Rev. B 64, 180510R (2001).
10. A. Yu Ignatov, L. M. Dieng, T. A. Tyson, T. He, and R. J. Cava, “Observation of a low-symmetry crystal structure for superconducting MgCNi3 by Ni K-edge x-ray absorption measurements,” Phys. Rev. B 67, 064509 (2003).
11. P. Diener, P. Rodière, T. Klein, C. Marcenat, J. Kacmarcik, Z. Pribulova, D. J. Jang, H. S. Lee, H. G. Lee, and S. I. Lee, “s-wave superconductivity probed by measuring magnetic penetration depth and lower critical field of MgCNi3 single crystals,” Phys. Rev. B 79, 220508R (2009).
12. O. V. Dolgov, I. I. Mazin, A. A. Golubov, S. Y. Savrasov, and E. G. Maksimov, “Critical Temperature and Enhanced Isotope Effect in the Presence of Paramagnons in Phonon-Mediated Superconductors,” Phys. Rev. Lett. 95, 257003 (2005).
13. A. Wälte, G. Fuchs, K. H. Müller, A. Handstein, K. Nenkov, V. N. Narozhnyi, S. L. Drechsler, S. Shulga, L. Schultz, and H. Rosner, “Evidence for strong electron-phonon coupling in MgCNi3,” Phys. Rev. B 70, 174503 (2004).
14. H. M. Tütüncü and G. P. Srivastava, “Electronic structure, phonons and electron–phonon interaction in MgXNi3 (X = B, C and N),” J. Phys.: Condens. Matter. 18, 11089 (2006).
15. S. Y. Li, R. Fan, X. H. Chen, C. H. Wang, W. Q. Mo, K. Q. Ruan, Y. M. Xiong, X. G. Luo, H. T. Zhang, L. Li, Z Sun, and L. Z. Cao, “Normal state resistivity, upper critical field, and Hall effect in superconducting perovskite MgCNi3,” Phys. Rev. B 64, 132505 (2001).
16. J. Y. Lin, P. L Ho, H. L. Huang, P. H. Lin, Y. L. Zhang, R. C. Yu, C. Q. Jin, and H. D. Yang, “BCS-like superconductivity in MgCNi3,” Phys. Rev. B 67,052501 (2003).
17. Z. Q. Mao, M. M. Rosario, K. D. Nelson, K. Wu, I. G. Deac, P. Schiffer, Y. Liu, T. He, K. A. Regan, and R. Cava, “Experimental determination of superconducting parameters for the intermetallic perovskite superconductor MgCNi3,” Phys. Rev. B 67, 094502 (2003).
18. J. H. Shim, S. K. Kwon, and B. I. Min, “Magnetic resonance from the interplay of frustration and superconductivity,” Phys. Rev. B 64, 180510 (2010).
19. A. Szajek, “Electronic structure of superconducting non-oxide perovskite MgCNi3,” J. Phys.: Condens. Matter 13, 595 (2001).
20. S. B. Dugdale and T. Jarlborg, “Electronic structure, magnetism, and superconductivity of MgCxNi3,” Phys. Rev. B 64, 100508 (2001).
21. I. Hase, “Ni3AlB: A bridge between superconductivity and ferromagnetism,” Phys. Rev. B 70, 033105 (2004).
22. A. Yu Ignatov, “Relationship between the electronic and local structure in BaPbxBi1−xO3 and Ba1−xKxBiO3 perovskites,” Nucl. Instrum. Methods Phys. Res. A 448, 332 (2000).
23. J. B. Boyce, F. G. Bridges, T. C. Clarson, T. H. Geballe, G. G. Li, and A. N. Slright, “Local structure of BaBixPb1-xO3 determined by x-ray-absorption spectroscopy,” Phys. Rev. B 44, 6961 (1991).
24. H. Hong, M. Upton, A. H. Said, H. Lee, D. J. Jang, S. I. Lee, R. Xu, and T. C. Chiang, “Phonon dispersions and anomalies of MgCNi3 single-crystal superconductors determined by inelastic x-ray scattering,” Phys. Rev. B 82, 134535 (2010).
25. P. Giannozzi et al., “QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials,” J. Phys.:Condens. Matter 21, 395502 (2009);
26. G. W. Bachelet, D. R. Hamann, and M. Schluter, “Pseudopotentials that work: From H to Pu,” Phys. Rev. B 26, 4199 (1982).
27. S. Baroni, S. de Gironcoli, A. dal Corso, and P. Giannozzi, “Phonons and related crystal properties from density-functional perturbation theory,” Rev. Mod. Phys. 73, 515 (2001).
28. A. Wälte, G. Fuchs, K. H. Müller, A. Handstein, K. Nenkov, V. N. Narozhnyi, S. L. Drechsler, S. Shulga, L. Schultz, and H. Rosner, “Evidence for strong electron-phonon coupling in MgCNi3,” Phys. Rev. B 70, 174503 (2004).
29. A. Legget, “What DO we know about high Tc?” Nat. Phys. 2, 134 (2006).
30. A. Liu, I. Mazin, and J. Kortus, “Beyond Eliashberg Superconductivity in MgB2: Anharmonicity, Two-Phonon Scattering, and Multiple Gaps,” Phys. Rev. Lett. 87, 087005 (1994).
31. D. P. Young, M. Moldovan, D. D. Craig, and P. W. Adams, “Superconducting properties of MgCNi3 films,” Phys. Rev. B 68, 020501R (2003).
32. M. D. Johannes and W. E. Pickett, “Electronic structure of ZnCNi3,” Phys. Rev. B 70, 060507R (2004).

Data & Media loading...


Article metrics loading...



A first principles calculation of the lattice dynamical properties of superconducting MgCNi3 has been performed using density functional perturbation theory (DFPT). The calculated phonon dispersion curves and phonondensity of states have been compared with inelastic x-ray scattering (IXS) and inelastic neutron scattering (INS) measurements. We show for the first time that phonon dispersion curves for MgCNi3 in whole Brillouin zone are positive (stable phonon modes) and in good agreement with the experimental data. The phonon DOS shows absence of phonondensity of states at zero energy unlike earlier calculations. There is a good agreement between calculated and experimental electron-phonon parameter and superconducting transition temperature. The Eliasberg function is quantitatively as well as qualitatively different from the phonondensity of states. The lattice specific heat and Debye temperature do not show any anomalous behaviour.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd