Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. J. K. Kim and E. F. Schubert, Opt. Exp. 16, 21835 (2008).
2. C. A. Tran, A. Osinski, R. F. Karlicek Jr., and I. Berishev, Appl. Phys. Lett. 75, 1494 (1999).
3. F. Schulze, A. Dadgar, J. Blasing, A. Diez, and A. Krost, Appl. Phys. Lett. 88, 121114 (2006).
4. C. F. Chu, F. I. Lai, J. T. Chu, C. C. Yu, C. F. Lin, H. C. Kuo, and S. C. Wang, J. Appl. Phys. 95, 3916 (2004).
5. W. H. Chen, X. N. Kang, X. D. Hu, R. Lee, Y. J. Wang, T. J. Yu, Z. J. Yang, G. Y. Zhang, L. Shan, K. X. Liu, X. D. Shan, L. P. You, and D. P. Yu, Appl. Phys. Lett. 91, 121114 (2007).
6. Y. S. Wu, J. H. Cheng, W. C. Peng, and H. Ouyang, Appl. Phys. Lett. 90, 251110 (2007).
7. H. P. Ho, K. C. Lo, G. G. Siu, C. Surya, K. F. Li, and K. W. Cheah, Mater. Chem. and Phys. 81, 99 (2003).
8. A. Elgawadi and J. Krasinski, J. Appl. Phys. 103, 033519 (2008).
9. H. W. Huang, C. H. Lin, C. C. Yu, K. Y. Lee, B. D. Lee, H. C. Kuo, S. Y. Kuo, K. M. Leung, and S. C. Wang, Mater. Sci. Eng. B 151, 205 (2008).
10. M. H. Doan, H. Lim, J. J. Lee, D. H. Nguyen, F. Rotermund, and S. I. Mho, J. Korean Phys. Soc. 57, 1295 (2010).
11. X. Li and J. J. Coleman, Appl. Phys. Lett. 70, 438 (1997).
12. S. Pereira, M. R. Correia, E. Pereira, K. P. O’Donnell, C. T.- Cowan, F. Sweeney, and E. Alves, Phys. Rev. B 64, 205311 (2001).
13. J. Neugebaner and C. G. Van de Walle, Appl. Phys. Lett. 69, 503 (1996).
14. M. A. Reshchikow and H. Morkoc, J. Appl. Phys. 97, 061301 (2005).
15. M. Albrecht, J. L. Weyher, B. Lucznik, I. Grzegory, and S. Porowski, Appl. Phys. Lett. 92, 231909 (2008).
16. N. Duxbury, U. Bangert, P. Dawson, E. J. Thrush, W. Van der Stricht, K. Jacobs, and I. Moerman, Appl. Phys. Lett. 76, 1600 (2000).
17. M. D. McCluskey, L. T. Romano, B. S. Krusor, N. M. Johnson, T. Suski, and J. Jun, Appl. Phys. Lett. 73, 1281 (1998).
18. L. C. Kimering, Solid-State Electron. 21, 1391 (1978).
19. M. G. Kim, S. D. Kwon, C. H. Kim, J. B. Lee, B.-D. Choe, and H. Lim, Appl. Phys. Lett. 63, 1366 (1993).
20. O. Ambacher, W. Rieger, P. Ansmann, H. Angerer, T. D. Moustakas, and M. Stutzman, Solid State Commun. 97, 365 (1996).
21. T. Ruf, J. Serrano, M. Cardona, P. Pavone, M. Pabst, M. Krisch, D’ Astuto, T. Suski, I. Grzegory, and M. Leszczynski, Phys. Rev. Lett. 86, 906 (1993).

Data & Media loading...


Article metrics loading...



The influences of the laser lift-off (LLO) process on the InGaN/GaN blue light emitting diode(LED) structures, grown on sapphire substrates by low-pressure metalorganic chemical vapor deposition, have been comprehensively investigated. The vertical LED structures on Cu carriers are fabricated using electroplating, LLO, and inductively coupled plasma etching processes sequentially. A detailed study is performed on the variation of defect concentration and optical properties, before and after the LLO process, employing high-resolution transmission electron microscopy (HRTEM), scanning electron microscopy (SEM) observations, cathodoluminescence(CL), photoluminescence (PL), and high-resolution X-ray diffraction (HRXRD) measurements. The SEM observations on the distribution of dislocations after the LLO show well that even the GaN layer near to the multiple quantum wells(MQWs) is damaged. The CL measurements reveal that the peak energy of the InGaN/GaN MQW emission exhibits a blue-shift after the LLO process in addition to a reduced intensity. These behaviors are attributed to a diffusion of indium through the defects created by the LLO and creation of non-radiative recombination centers. The observed phenomena thus suggest that the MQWs, the active region of the InGaN/GaN light emitting diodes, may be damaged by the LLO process when thickness of the GaN layer below the MQW is made to be 5 μm, a conventional thickness. The CL images on the boundary between the KrF irradiated and non-irradiated regions suggest that the propagation of the KrF laser beam and an accompanied recombination enhanced defect reaction, rather than the propagation of a thermal shock wave, are the main origin of the damage effects of the LLO process on the InGaN/GaN MQWs and the n-GaN layer as well.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd