Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.M. G. Panthani, V. Akhavan, B. Goodfellow, J. P. Schmidtke, L. Dunn, A. Dodabalapur, P. F. Barbaba, and B. A. Korgel, J. Am. Chem. Soc. 130, 16770 (2008).
2.N. Naghavi, S. Spiering, M. Powalla, B. Cavana, and D. Lincot, Prog. Photovolt: Res. Appl. 11, 437 (2003).
3.M. L. A. Aguilera, J. R. A. Hernández, M. A. G. Trujillo, and M. O. Lopez, Sol. Energy Mater. Sol. Cells 91, 1483 (2007).
4.S. Chichibu, H. Nakanishi, and S. Shirakata, Appl. Phys. Lett. 66, 3513 (1995).
5.S. T. Cornor, C. M. Hsu, B. D. Weil, S. Aloni, and Y. Cui, J. Am. Chem. Soc. 131, 4962 (2009).
6.C. H. Ho, Appl. Phys. Lett. 96, 061902 (2010).
7.I. Tsuji, H. Kato, and A. Kudo, Angew. Chem. Int. Ed. 44, 3565 (2005).
8.I. Tsuji, H. Kato, H. Kobayashi, and A. Kudo, J. Am. Chem. Soc. 126, 13406 (2004).
9.F. C. Akkari, R. Brini, M. Kanzari, and B. Rezig, J. Mater. Sci. 40, 5751 (2005).
10.B. Mao, C. H. Chung, J. Wang, and C. Burda, J. Phys. Chem. C 115, 8945 (2011).
11.Y. Hamanaka, T. Ogawa, M. Tsuzuki, and T. Kuzuya, J. Phys. Chem. C 115, 1786 (2011).
12.S. H. You, K. J. Hong, B. J. Lee, T. S. Jeong, C. J. Youn, J. S. Park, and S. N. Baek, J. Cryst. Growth 245, 261 (2002).
13.J. L. Shay, B. Tell, L. M. Schiavone, H. M. Kasper, and F. Thiel, Phys. Rev. B 9, 1719 (1974).
14.J. Krustok, J. Raudojia, M. Krunks, H. Mändar, and H. Collan, J. Appl. Phys. 88, 205 (2000).
15.L. H. Lin, C. C. Wu, C. H. Lai, and T. C. Lee, Chem. Mater. 20, 4475 (2008).
16.D. Wang, W. Zheng, C. Hao, Q. Peng, and Y. Li, Chem. Comm. 2556 (2008).
17.T. Torimoto, T. Adachi, K. Okazaki, M. Sakuraoka, T. Shibayama, B. Ohtani, A. Kudo, and S. Kuwabata, J. Am. Chem. Soc. 129, 12388 (2007).
18.W. N. Honeyman and K. H. Wilkinson, J. Phys. D: Appl. Phys. 4, 1182 (1971).
19.E. E. Hellstrom and R. A. Huggins, J. Solid State Chem. 35, 207 (1980).
20.N. Tsuboi, Y. Hashimoto, M. Kurasawa, S. Kobayashi, and F. Kaneko, Jpn. J. Appl. Phys. 38, 6445 (1999).
21.J. Li and A. W. Sleight, J. Solid State Chem. 177, 889 (2004).
22.W. C. Sheets, E. S. Stampler, M. I. Bertoni, M. Sasaki, T. J. Marks, T. O. Mason, and K. R. Peoppelmeier, Inorg. Chem. 47, 2696 (2008).
23.S. Ouyang, H. Zhang, D. Li, T. Yu, J. Ye, and Z. Zou, J. Phys. Chem. B 110, 11677 (2006).
24.S. Ouyang, N. Kikugawa, D. Chen, Z. Zou, and J. Ye, J. Phys. Chem. C 113, 1560 (2009).
25.S. Ouyang, Z. Li, Z. Ouyang, T. Yu, J. Ye, and Z. Zou, J. Phys. Chem. C 112, 3134 (2008).
26.S. Ouyang and J. Ye, J. Am. Chem. Soc. 133, 7757 (2011).
27.E. Matatagui, A. G. Thompson, and M. Cardona, Phys. Rev. 176, 950 (1968).
28.C. H. Ho, C. H. Chan, L. C. Tien, and Y. S. Huang, J. Phys. Chem. C 115, 25088 (2011).
29.C. H. Ho, J. Mater. Chem. 21, 10518 (2011).
30.D. E. Aspnes in Handbook on Semiconductors, edited by M. Balkanski, (North Holland, Amsterdam, 1980).
31.C. H. Ho, J. Cryst. Growth 317, 52 (2011).
32.C. H. Ho, H. W. Lee, and Z. H. Cheng, Rev. Sci. Instrum. 75, 1098 (2004).
33.M. Robbins and M. A. Miksovsky, J. Solid State Chem. 5, 462 (1972).
34.Y. Ida, S. Watase, T. Shinagawa, M. Watanabe, M. Chigane, M , Inaba, A. Tasaka, and M. Izaki, Chem. Mater. 20, 1254 (2008).
35.L. M. Lyu and M. H. Huang, J. Phys. Chem. C 115, 17768 (2011).
36.L. M. Lyu, W. C. Wang, and M. H. Huang, Chem. Eur. J. 16, 14167 (2010).
37.F. H. Pollak and H. Shen, Mater. Sci. Eng. R 10, 275 (1993).
38.C. H. Ho and G. T. Huang, Opt. Express 18, 3820 (2010).
39.T. M. Hsu, J. S. Lee, and H. L. Hwang, J. Appl. Phys. 68, 283 (1990).
40.N. K. Pandey, K. Tiwari, and A. Roy, IEEE Sensors J. 11, 2142 (2011).
41.M. A. Kashi, A. Ramazani, H. Abbasian, and A. Khayyatian, Sens. Actuators A: Phys. 174, 69 (2012).
42.V. C. Gonçalves and D. T. Balogh, Sens. Actuators B: Chem. 162, 307 (2012).

Data & Media loading...


Article metrics loading...



Optical examination of a chaocogenide compound AgAlS2 which can spontaneously transfer to a AgAlO2 oxide has been investigated by thermoreflectance (TR) spectroscopy herein. The single crystals of AgAlS2 were grown by chemical vapor transport (CVT) method using ICl3 as a transport agent sealed in evacuated quartz tubes. The as-grown AgAlS2 crystals essentially possess a transparent and white color in vacuum. The crystal surface of AgAlS2 becomes darkened and brownish when putting AgAlS2 into atmosphere for reacting with water vapor or hydrogen gas. Undergoing the chemical reaction process, oxygen deficient AgAlO2-2x with brownish and reddish-like color on surface of AgAlS2 forms. The transition energy of deficient AgAlO2-2x was evaluated by TR experiment. The value was determined to be ∼2.452 eV at 300 K. If the sample is kept dry and moved away from moisture, AgAlS2 crystal can stop forming more deficient AgAlO2-2x surface oxides. The experimental TR spectra for the surface-reacted sample show clearly two transition features at EW=2.452 eV for deficient AgAlO2-2x and EU=3.186 eV for AgAlS2, respectively. The EU transition belongs to direct band-edge exciton of AgAlS2. Alternatively, for surface-oxidation process of AgAlS2 lasting for a long time, a AgAlO2 crystal with yellowish color will eventually form. The TR measurements show mainly a ground-state band edge exciton of detected for AgAlO2. The energy was determined to be =2.792 eV at 300 K. The valence-band electronic structure of AgAlS2 has been detailed characterized using polarized-thermoreflectance (PTR) measurements in the temperature range between 30 and 340 K. Physical chemistry behaviors of AgAlS2 and AgAlO2 have been comprehensively studied via detailed analyses of PTR and TR spectra. Based on the experimental analyses, optical and chemical behaviors of the AgAlS2 crystals under atmosphere are realized. A possible optical-detecting scheme for using AgAlS2 as a humidity sensor has also been proposed.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd