1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Multiple-trapping in pentacene field-effect transistors with a nanoparticles self-assembled monolayer
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/2/2/10.1063/1.4720399
1.
1. C. D. Dimitrakopoulos, S. Purushothaman, J. Kymissis, A. Callegari, and J. M. Shaw, Science 283, 822 (1999).
http://dx.doi.org/10.1126/science.283.5403.822
2.
2. D. V. Lang, X. Chi, T. Siegrist, A. M. Sergent, and A. P. Ramirez, Phys. Rev. Lett. 93, 076601 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.076601
3.
3. J. E. Northrup and M. L. Chabinyc, Phys. Rev. B 68, 041202R (2003).
http://dx.doi.org/10.1103/PhysRevB.68.041202
4.
4. A. R. Volkel, R. A. Street, and D. Knipp, Phys. Rev. B. 66, 195336 (2002).
http://dx.doi.org/10.1103/PhysRevB.66.195336
5.
5. Y. S. Yang, S. H. Kim, J.-I. Lee, H. Y. Chu, L.-M. Do, H. Lee, J. Oh, T. Zyung, M. K. Ryu, and M. S. Jang, Appl. Phys. Lett. 80, 1595 (2002).
http://dx.doi.org/10.1063/1.1459117
6.
6. V. Nadazdy, R. Durny, J. Puigdollers, C. Voz, S. Cheylan, and K. Gmucova, Appl. Phys. Lett. 90, 092112 (2007).
http://dx.doi.org/10.1063/1.2710203
7.
7. X. C. Ren, S. M. Wang, C. W. Leung, F. Yan, and P. K. L. Chan, Appl. Phys. Lett. 99, 043303 (2011).
http://dx.doi.org/10.1063/1.3617477
8.
8. D. Tondelier, K. Lmimouni, D. Vuillaume, C. Fery, and G. Haas, Appl. Phys. Lett. 85, 5763 (2004).
http://dx.doi.org/10.1063/1.1829166
9.
9. K. J. Baeg, Y. Y. Noh, J. Ghim, S. J. Kang, H. Lee, and D. Y. Kim, Adv. Mater. 18, 3179 (2006).
http://dx.doi.org/10.1002/adma.200601434
10.
10. W. L. Leong, P. S. Lee, S. G. Mhaisalkar, T. P. Chen, and A. Dodabalapur, Appl. Phys. Lett. 90, 042906 (2007).
http://dx.doi.org/10.1063/1.2435598
11.
11. M. Weis, K. Gmucova, V. Nadazdy, I. Capek, A. Satka, M. Kopani, J. Cirak, and E. Majkova, J. Nanosci. Nanotechnol. 8, 5684 (2008).
http://dx.doi.org/10.1166/jnn.2008.214
12.
12. S. Sun, H. Zeng, D. B. Robinson, S. Raoux, P. M. Rice, S. X. Wang, and G. Li, J. Am. Chem. Soc. 126, 273 (2004).
http://dx.doi.org/10.1021/ja0380852
13.
13. K. Lee, M. Weis, J. Lin, D. Taguchi, E. Majkova, T. Manaka, and M. Iwamoto, J. Appl. Phys. 109, 064512 (2011).
http://dx.doi.org/10.1063/1.3567916
14.
14. H. Klauk, G. Schmid, W. Radlik, W. Weber, L. Zhou, C. D. Sheraw, J. A. Nichols, and T. N. Jackson, Solid-State Electron 47, 297 (2003).
http://dx.doi.org/10.1016/S0038-1101(02)00210-1
15.
15. D. J. Gundlach, L. Zhou, J. A. Nichols, T. N. Jackson, P. V. Necliudov, and M. S. Shur, J. Appl. Phys. 100, 24509 (2006).
http://dx.doi.org/10.1063/1.2215132
16.
16. J. Zaumseil, K. W. Baldwin, and J. A. Rogers, J. Appl. Phys. 93, 6117 (2003).
http://dx.doi.org/10.1063/1.1568157
17.
17. K. Lee, M. Weis, W. Ou-Yang, D. Taguchi, T. Manaka, and M. Iwamoto, Jpn. J. Appl. Phys. 50, 041601 (2011).
http://dx.doi.org/10.1143/JJAP.50.041601
18.
18. J. Bisquert, Phys. Rev. B. 77, 235203 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.235203
19.
19. S. Kochowski, K. Nitsch, B. Paszkiewicz, and R. Paszkiewicz, Thin Solid Films 444, 208 (2003).
http://dx.doi.org/10.1016/S0040-6090(03)01024-1
20.
20. J. van de Lagemaat, N.-G. Park, and A. J. Frank, J. Phys. Chem. B 104, 2044 (2000).
http://dx.doi.org/10.1021/jp993172v
21.
21. P. G. Le Comber and W. E. Spear, Phys. Rev. Lett. 25, 509 (1970).
http://dx.doi.org/10.1103/PhysRevLett.25.509
22.
22. G. Horowitz, M. E. Hajlaoui, and R. Hajlaoui, J. Appl. Phys. 87, 4456 (2000).
http://dx.doi.org/10.1063/1.373091
23.
23. V. Nádaždy, R. Durný, J. Puigdollers, C. Voz, S. Cheylan, and M. Weis, J. Non-Cryst. Sol. 354, 2888 (2008).
http://dx.doi.org/10.1016/j.jnoncrysol.2007.10.095
24.
24. O. Engström and A. Alm, J. Appl. Phys. 54, 5240 (1983).
http://dx.doi.org/10.1063/1.332751
http://aip.metastore.ingenta.com/content/aip/journal/adva/2/2/10.1063/1.4720399
Loading

Figures

Image of FIG. 1.

Click to view

FIG. 1.

Sketch of the top contact structure of organic field-effect transistor (OFET) with Ag NPs SAM on the gate insulator for IV and IS measurements.

Image of FIG. 2.

Click to view

FIG. 2.

Transfer characteristics of OFETs for a channel length L=50 μm and V ds =-40 V.

Image of FIG. 3.

Click to view

FIG. 3.

Contact resistance as a function of gate source voltage.

Image of FIG. 4.

Click to view

FIG. 4.

Capacitance as a function of applied voltage for a channel length L= 50 μ m. The inset illustrates the gradual change of the effective distance of the injected charge from the pentacene-gate insulator interface.

Image of FIG. 5.

Click to view

FIG. 5.

Impedance magnitude and phase as a function of frequency for devices: (a) reference and (b) with NPs SAM. The solid line represents the fitting by (c) MW equivalent circuit with multiple trapped states.

Image of FIG. 6.

Click to view

FIG. 6.

Capacitance as a function of relaxation time for different trap levels at different applied voltages. The solid points stand for the device with NPs SAM, while open points represent single relaxation time traps in device without NPs SAM. Solid line shows Gaussian fit in the energy scale.

Tables

Generic image for table

Click to view

Table I.

Comparison of capacitances obtained from the IS simulation for device w/o NPs and with NPs.

Loading

Article metrics loading...

/content/aip/journal/adva/2/2/10.1063/1.4720399
2012-05-15
2014-04-18

Abstract

A silver nanoparticles self-assembledmonolayer(SAM) was incorporated in pentacene field-effect transistor and its effects on the carrier injection and transport were investigated using the current-voltage (IV) and impedance spectroscopy (IS) measurements. The IV results showed that there was a significant negative shift of the threshold voltage, indicating the hole trapping inside the devices with about two orders higher in the contact resistance and an order lower in the effective mobility when a SAM was introduced. The IS measurements with the simulation using a Maxwell-Wagner equivalent circuit model revealed the existence of multiple trapping states for the devices with NPs, while the devices without NPs exhibited only a single trap state.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/2/2/1.4720399.html;jsessionid=5nucgl3bghm65.x-aip-live-02?itemId=/content/aip/journal/adva/2/2/10.1063/1.4720399&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Multiple-trapping in pentacene field-effect transistors with a nanoparticles self-assembled monolayer
http://aip.metastore.ingenta.com/content/aip/journal/adva/2/2/10.1063/1.4720399
10.1063/1.4720399
SEARCH_EXPAND_ITEM