1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Electrical breakdown of carbon nanotube devices and the predictability of breakdown position
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/2/2/10.1063/1.4720426
1.
1.Z. Yao, C. L. Kane, and C. Dekker, Phys. Rev. Lett. 84, 2941 (2000).
http://dx.doi.org/10.1103/PhysRevLett.84.2941
2.
2.M. Bockrath, W. Liang, D. Bozovic, J. H. Hafner, C. M. Lieber, M. Tinkham, and H. Park, Science 291, 283 (2001).
http://dx.doi.org/10.1126/science.291.5502.283
3.
3.J. Y. Huang, S. Chen, S. H. Jo, Z. Wang, D. X. Han, G. Chen, M. S. Dresselhaus, and Z. F. Ren, Phys. Rev. Lett. 94, 236802 (2005).
http://dx.doi.org/10.1103/PhysRevLett.94.236802
4.
4.A. Javey, J. Guo, M. Paulsson, Q. Wang, D. Mann, M. Lundstrom, and H. Dai, Phys. Rev. Lett. 92, 106804 (2004).
http://dx.doi.org/10.1103/PhysRevLett.92.106804
5.
5.M. A. Kuroda, A. Cangellaris, and J.-P. Leburton, Phys. Rev. Lett. 95, 266803 (2005).
http://dx.doi.org/10.1103/PhysRevLett.95.266803
6.
6.M. A. Kuroda and J.-P. Leburton, Appl. Phys. Lett. 89, 103102 (2006).
http://dx.doi.org/10.1063/1.2345244
7.
7.Y. Ouyang and J. Guo, Appl. Phys. Lett. 89, 183122 (2006).
http://dx.doi.org/10.1063/1.2382734
8.
8.V. V. Deshpande, S. Hsieh, A. W. Bushmaker, M. Bockrath, and S. B. Cronin, Phys. Rev. Lett. 102, 105501 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.105501
9.
9.Y. Wei, K. Jiang, L. Liu, Z. Chen, and S. Fan, Nano Lett. 7, 3792 (2007).
http://dx.doi.org/10.1021/nl072298y
10.
10.Y. Wei, P. Liu, K. Jiang, L. Liu, and S. Fan, Appl. Phys. Lett. 93, 023118 (2008).
http://dx.doi.org/10.1063/1.2957986
11.
11.A. Liao, R. Alizadegan, Z.-Y. Ong, S. Dutta, F. Xiong, K. J. Hsia, and E. Pop, Phys. Rev. B 82, 205406 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.205406
12.
12.C.-L. Tsai, A. Liao, E. Pop, and M. Shim, Appl. Phys. Lett. 99, 053120 (2011).
http://dx.doi.org/10.1063/1.3622769
13.
13.P. Mahanandia and K. K. Nanda, Nanotechnology 19, 155602 (2008).
http://dx.doi.org/10.1088/0957-4484/19/15/155602
14.
14.H. M. Manohara, E. W. Wang, E. Schlecht, B. D. Hunt, and P. H. Siegel, Nano Lett. 5, 1469 (2005).
http://dx.doi.org/10.1021/nl050829h
15.
15.S. Suzuki, K. Yamada, Y. Homma, and Y. Kobayashi, Carbon 48, 3211 (2010).
http://dx.doi.org/10.1016/j.carbon.2010.05.006
16.
16.E. Watanabe, K. Tsukagoshi, D. Kanai, I. Yagi, and Y. Aoyagi, Appl. Phys. Lett. 83, 1429 (2003).
http://dx.doi.org/10.1063/1.1602559
17.
17.A. Buldum and J. P. Lu, Phys. Rev. Lett. 91, 236801 (2003).
http://dx.doi.org/10.1103/PhysRevLett.91.236801
18.
18.P. Mahanandia and K. K. Nanda, Appl. Phys. Lett. 93, 063105 (2008).
http://dx.doi.org/10.1063/1.2970033
19.
19.L. T. Singh and K. K. Nanda, Nanotechnology 22, 315705 (2011).
http://dx.doi.org/10.1088/0957-4484/22/31/315705
20.
20.I-K. Hsu, R. Kumar, A. Bushmaker, S. B. Cronin, M. T. Pettes, L. Shi, T. Brintlinger, M. S. Fuhrer, and J. Cumings, Appl. Phys. Lett. 92, 063119 (2008).
http://dx.doi.org/10.1063/1.2829864
21.
21.I-K. Hsu, M. T. Pettes, M. Aykol, L. Shi, and S. B. Cronin, J. Appl. Phys. 108, 84307 (2010).
http://dx.doi.org/10.1063/1.3499256
22.
22.P. Kim, L. Shi, A. Majumdar, and P. L. Mceuen, Physica B 323, 67 (2002).
http://dx.doi.org/10.1016/S0921-4526(02)00969-9
23.
23.J.-O. Lee, C. Park, J.-J. Kim, J. Kim, J. W. Park, and K.-H. Yoo, J. Phys. D: Appl. Phys. 33, 1953 (2000).
http://dx.doi.org/10.1088/0022-3727/33/16/303
24.
24.E. Minoux, O. Groening, K. B. K. Teo, S. H. Dalal, L. Gangloff, J.-P. Schnell, L. Hudanski, I. Y. Y. Bu, P. Vincent, P , Legagneux, G. A. J. Amaratunga, and W. I. Milne, Nano Lett. 5, 2135 (2005).
http://dx.doi.org/10.1021/nl051397d
25.
25.H. Kitsuki, T. Yamada, D. Fabris, J. R. Jameson, P. Wilhite, M. Suzuki, and C. Y. Yang, Appl. Phys. Lett. 92, 173110 (2008).
http://dx.doi.org/10.1063/1.2918839
26.
26.O. Suekane, A. Nagataki, and Y. Nakayama, Appl. Phys. Lett. 89, 183110 (2006).
http://dx.doi.org/10.1063/1.2372749
27.
27.S. Suzuki, and Y. Kobayashi, J. Phys. Chem. C 111, 4524 (2007).
http://dx.doi.org/10.1021/jp067398r
28.
28.A. Salehi-Khojin, K. Y. Lin, C. R. Field, and R. I. Masel, Science 329, 1327 (2010).
http://dx.doi.org/10.1126/science.1194210
29.
29.K. Hirahara, K. Inose, and Y. Nakayama, Appl. Phys. Lett. 97, 051905 (2010).
http://dx.doi.org/10.1063/1.3473823
30.
30.C. Jin, K. Suenaga, and S. Iijima, Nano Lett. 8, 1127 (2008).
http://dx.doi.org/10.1021/nl0732676
http://aip.metastore.ingenta.com/content/aip/journal/adva/2/2/10.1063/1.4720426
Loading
/content/aip/journal/adva/2/2/10.1063/1.4720426
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/2/2/10.1063/1.4720426
2012-05-15
2014-09-17

Abstract

We have investigated electrical transport properties of long (>10 μm) multiwalled carbon nanotubes (NTs) by dividing individuals into several segments of identical length. Each segment has different resistance because of the random distribution of defect density in an NT and is corroborated by Raman studies. Higher is the resistance, lower is the current required to break the segments indicating that breakdown occurs at the highly resistive segment/site and not necessarily at the middle. This is consistent with the one-dimensional thermal transport model. We have demonstrated the healing of defects by annealing at moderate temperatures or by currentannealing. To strengthen our mechanism, we have carried out electrical breakdown of nitrogen doped NTs (NNTs) with diameter variation from one end to the other. It reveals that the electrical breakdown occurs selectively at the narrower diameter region. Overall, we believe that our results will help to predict the breakdown position of both semiconducting and metallic NTs.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/2/2/1.4720426.html;jsessionid=lmdtflxqkb3b.x-aip-live-06?itemId=/content/aip/journal/adva/2/2/10.1063/1.4720426&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Electrical breakdown of carbon nanotube devices and the predictability of breakdown position
http://aip.metastore.ingenta.com/content/aip/journal/adva/2/2/10.1063/1.4720426
10.1063/1.4720426
SEARCH_EXPAND_ITEM