1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Electrical breakdown of carbon nanotube devices and the predictability of breakdown position
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/2/2/10.1063/1.4720426
1.
1.Z. Yao, C. L. Kane, and C. Dekker, Phys. Rev. Lett. 84, 2941 (2000).
http://dx.doi.org/10.1103/PhysRevLett.84.2941
2.
2.M. Bockrath, W. Liang, D. Bozovic, J. H. Hafner, C. M. Lieber, M. Tinkham, and H. Park, Science 291, 283 (2001).
http://dx.doi.org/10.1126/science.291.5502.283
3.
3.J. Y. Huang, S. Chen, S. H. Jo, Z. Wang, D. X. Han, G. Chen, M. S. Dresselhaus, and Z. F. Ren, Phys. Rev. Lett. 94, 236802 (2005).
http://dx.doi.org/10.1103/PhysRevLett.94.236802
4.
4.A. Javey, J. Guo, M. Paulsson, Q. Wang, D. Mann, M. Lundstrom, and H. Dai, Phys. Rev. Lett. 92, 106804 (2004).
http://dx.doi.org/10.1103/PhysRevLett.92.106804
5.
5.M. A. Kuroda, A. Cangellaris, and J.-P. Leburton, Phys. Rev. Lett. 95, 266803 (2005).
http://dx.doi.org/10.1103/PhysRevLett.95.266803
6.
6.M. A. Kuroda and J.-P. Leburton, Appl. Phys. Lett. 89, 103102 (2006).
http://dx.doi.org/10.1063/1.2345244
7.
7.Y. Ouyang and J. Guo, Appl. Phys. Lett. 89, 183122 (2006).
http://dx.doi.org/10.1063/1.2382734
8.
8.V. V. Deshpande, S. Hsieh, A. W. Bushmaker, M. Bockrath, and S. B. Cronin, Phys. Rev. Lett. 102, 105501 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.105501
9.
9.Y. Wei, K. Jiang, L. Liu, Z. Chen, and S. Fan, Nano Lett. 7, 3792 (2007).
http://dx.doi.org/10.1021/nl072298y
10.
10.Y. Wei, P. Liu, K. Jiang, L. Liu, and S. Fan, Appl. Phys. Lett. 93, 023118 (2008).
http://dx.doi.org/10.1063/1.2957986
11.
11.A. Liao, R. Alizadegan, Z.-Y. Ong, S. Dutta, F. Xiong, K. J. Hsia, and E. Pop, Phys. Rev. B 82, 205406 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.205406
12.
12.C.-L. Tsai, A. Liao, E. Pop, and M. Shim, Appl. Phys. Lett. 99, 053120 (2011).
http://dx.doi.org/10.1063/1.3622769
13.
13.P. Mahanandia and K. K. Nanda, Nanotechnology 19, 155602 (2008).
http://dx.doi.org/10.1088/0957-4484/19/15/155602
14.
14.H. M. Manohara, E. W. Wang, E. Schlecht, B. D. Hunt, and P. H. Siegel, Nano Lett. 5, 1469 (2005).
http://dx.doi.org/10.1021/nl050829h
15.
15.S. Suzuki, K. Yamada, Y. Homma, and Y. Kobayashi, Carbon 48, 3211 (2010).
http://dx.doi.org/10.1016/j.carbon.2010.05.006
16.
16.E. Watanabe, K. Tsukagoshi, D. Kanai, I. Yagi, and Y. Aoyagi, Appl. Phys. Lett. 83, 1429 (2003).
http://dx.doi.org/10.1063/1.1602559
17.
17.A. Buldum and J. P. Lu, Phys. Rev. Lett. 91, 236801 (2003).
http://dx.doi.org/10.1103/PhysRevLett.91.236801
18.
18.P. Mahanandia and K. K. Nanda, Appl. Phys. Lett. 93, 063105 (2008).
http://dx.doi.org/10.1063/1.2970033
19.
19.L. T. Singh and K. K. Nanda, Nanotechnology 22, 315705 (2011).
http://dx.doi.org/10.1088/0957-4484/22/31/315705
20.
20.I-K. Hsu, R. Kumar, A. Bushmaker, S. B. Cronin, M. T. Pettes, L. Shi, T. Brintlinger, M. S. Fuhrer, and J. Cumings, Appl. Phys. Lett. 92, 063119 (2008).
http://dx.doi.org/10.1063/1.2829864
21.
21.I-K. Hsu, M. T. Pettes, M. Aykol, L. Shi, and S. B. Cronin, J. Appl. Phys. 108, 84307 (2010).
http://dx.doi.org/10.1063/1.3499256
22.
22.P. Kim, L. Shi, A. Majumdar, and P. L. Mceuen, Physica B 323, 67 (2002).
http://dx.doi.org/10.1016/S0921-4526(02)00969-9
23.
23.J.-O. Lee, C. Park, J.-J. Kim, J. Kim, J. W. Park, and K.-H. Yoo, J. Phys. D: Appl. Phys. 33, 1953 (2000).
http://dx.doi.org/10.1088/0022-3727/33/16/303
24.
24.E. Minoux, O. Groening, K. B. K. Teo, S. H. Dalal, L. Gangloff, J.-P. Schnell, L. Hudanski, I. Y. Y. Bu, P. Vincent, P , Legagneux, G. A. J. Amaratunga, and W. I. Milne, Nano Lett. 5, 2135 (2005).
http://dx.doi.org/10.1021/nl051397d
25.
25.H. Kitsuki, T. Yamada, D. Fabris, J. R. Jameson, P. Wilhite, M. Suzuki, and C. Y. Yang, Appl. Phys. Lett. 92, 173110 (2008).
http://dx.doi.org/10.1063/1.2918839
26.
26.O. Suekane, A. Nagataki, and Y. Nakayama, Appl. Phys. Lett. 89, 183110 (2006).
http://dx.doi.org/10.1063/1.2372749
27.
27.S. Suzuki, and Y. Kobayashi, J. Phys. Chem. C 111, 4524 (2007).
http://dx.doi.org/10.1021/jp067398r
28.
28.A. Salehi-Khojin, K. Y. Lin, C. R. Field, and R. I. Masel, Science 329, 1327 (2010).
http://dx.doi.org/10.1126/science.1194210
29.
29.K. Hirahara, K. Inose, and Y. Nakayama, Appl. Phys. Lett. 97, 051905 (2010).
http://dx.doi.org/10.1063/1.3473823
30.
30.C. Jin, K. Suenaga, and S. Iijima, Nano Lett. 8, 1127 (2008).
http://dx.doi.org/10.1021/nl0732676
http://aip.metastore.ingenta.com/content/aip/journal/adva/2/2/10.1063/1.4720426
Loading

Figures

Image of FIG. 1.

Click to view

FIG. 1.

(a) SEM image of the fabricated device I. (b) Two-probe V-I measurement of segment 2-3. Inset shows the linear variation of 1-2 & 3-4 segments. The arrow head represents the position of abrupt rise in the voltage. (c) Ratio of intensities of G & D bands from the micro-Raman mapping taken along the length of a separate NT. (d) V-I curve of 1-4 segment of the above device at high bias. Breakdown occurred below 75 nA as shown by an arrow. Inset shows the SEM image of the broken NT of 2-3 segment.

Image of FIG. 2.

Click to view

FIG. 2.

(a) SEM image of device II. 2-3 electrodes are found sorted as shown by the arrow. (b) V-I curves of segments 1-4 and 3-4 at low current. (c) V-I curve of segment 1-4 with two abrupt jumps as indicated by arrows. Inset shows the SEM image of segment 3-4. (d) V-I curves for segments 1-4 and 3-4 after high bias application. SEM image of segment 3-4 after complete breakdown is shown in the inset.

Image of FIG. 3.

Click to view

FIG. 3.

(a) Raman measurement taken at different positions of a NT connecting two electrodes (device III). (b) SEM image of the device III. Laser beam positions are shown by circles. Arrow shows the breakdown point. (c) The V-I curve for current applied between end-electrodes. Arrow head shows breakdown point. (d) SEM image of the broken part of the NT.

Image of FIG. 4.

Click to view

FIG. 4.

Resistance of different segments for devices IV & V shown in (a) & (b) respectively. The arrow is shown to the electrical breakdown of the NT segment. (c) J max with the σ1/2 showing linear relation for both the devices (IV and V). (d) Ratio of intensities of G & D bands from the micro-Raman mapping taken along NT segment after each annealing temperature. Successive laser beam positions are separated by 0.5 μm.

Image of FIG. 5.

Click to view

FIG. 5.

(a) The breakdown of the NNT under high current bias. The inset shows the SEM image of the broken NNT device (X) with Pt electrodes. Arrow head shows the breakdown point. (b) Similar results obtained for another NNT device (XI). (c) R-T measurement of the individual NNT. Arrow head follows the heating and cooling paths.

Tables

Generic image for table

Click to view

Table I.

The resistance and maximum current (I max) before the breakdown for devices I to III shown in the figures 1–3 is summarized. The average diameter of NT and end-electrodes separation has been measured by SEM.

Generic image for table

Click to view

Table II.

The maximum current (I max) at the breakdown and the corresponding resistances for different equi-segments of devices IV & V.

Generic image for table

Click to view

Table III.

Room temperature resistance of different segments of different NT devices VII, VIII & IX after annealing at 180 & 300 °C. L & NL represents the linear & non-linear variation of V-I curves, respectively.

Loading

Article metrics loading...

/content/aip/journal/adva/2/2/10.1063/1.4720426
2012-05-15
2014-04-18

Abstract

We have investigated electrical transport properties of long (>10 μm) multiwalled carbon nanotubes (NTs) by dividing individuals into several segments of identical length. Each segment has different resistance because of the random distribution of defect density in an NT and is corroborated by Raman studies. Higher is the resistance, lower is the current required to break the segments indicating that breakdown occurs at the highly resistive segment/site and not necessarily at the middle. This is consistent with the one-dimensional thermal transport model. We have demonstrated the healing of defects by annealing at moderate temperatures or by currentannealing. To strengthen our mechanism, we have carried out electrical breakdown of nitrogen doped NTs (NNTs) with diameter variation from one end to the other. It reveals that the electrical breakdown occurs selectively at the narrower diameter region. Overall, we believe that our results will help to predict the breakdown position of both semiconducting and metallic NTs.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/2/2/1.4720426.html;jsessionid=14ntmamwr4637.x-aip-live-06?itemId=/content/aip/journal/adva/2/2/10.1063/1.4720426&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Electrical breakdown of carbon nanotube devices and the predictability of breakdown position
http://aip.metastore.ingenta.com/content/aip/journal/adva/2/2/10.1063/1.4720426
10.1063/1.4720426
SEARCH_EXPAND_ITEM