Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/2/2/10.1063/1.4721670
1.
1.S. Hunpratub, P. Thongbai, T. Yamwong, R. Yimnirun, and S. Maensiri, Appl. Phys. Lett. 94, 062904 (2009).
http://dx.doi.org/10.1063/1.3078825
2.
2.L. Mitoseriu, M. Vivianib, M. T. Buscaglia, V. Buscaglia, and P. Nannic, Journal Of Optoelectronics And Advanced Materials 10, 2373 (2008).
3.
3.G.-Z. Liu, C. Wang, C.-C. Wang, J. Qiu, M. He, J. Xing, K.-J. Jin, H.-B. Lu, and G.-Z. Yang, Appl. Phys. Lett. 92, 122903 (2008).
http://dx.doi.org/10.1063/1.2900989
4.
4.P. Lunkenheimer, V. Bobnar, A. V. Pronin, A. I. Ritus, A. A. Volkov, and A. Loidl, Phys. Rev. B 66, 052105 (2002).
http://dx.doi.org/10.1103/PhysRevB.66.052105
5.
5.P. Ren, Z. Yang, W. G. Zhu, C. H. A. Huan, and L. Wang, J. Appl. Phys. 109, 074109 (2011).
http://dx.doi.org/10.1063/1.3560564
6.
6.R. Schmidt, W. Eerenstein, T. Winiecki, F. D. Morrison, and P. A. Midgley, Phys. Rev. B 75, 245111 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.245111
7.
7.S. F. Shao, J. L. Zhang, P. Zheng, W. L. Zhong, and C. L. Wang, J. Appl. Phys. 99, 084106 (2006).
http://dx.doi.org/10.1063/1.2191447
8.
8.J. Wang, J. B. Neaton, H. Zheng, V. Nagarajan, S. B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D. G. Schlom, U. V. Waghmare, N. A. Spaldin, K. M. Rabe, M. Wuttig, and R. Ramesh, Science 299, 1719 (2003).
http://dx.doi.org/10.1126/science.1080615
9.
9.S. Y. Yang, F. Zavaliche, L. Mohaddes-Ardabili, V. Vaithyanathan, D. G. Schlom, Y. J. Lee, Y. H. Chu, M. P. Cruz, Q. Zhan, T. Zhao, and R. Ramesh, Appl. Phys. Lett. 87, 102903 (2005).
http://dx.doi.org/10.1063/1.2041830
10.
10.F. Zavaliche, P. Shafer, R. Ramesh, M. P. Cruz, R. R. Das, D. M. Kim, and C. B. Eom, Appl. Phys. Lett. 87, 252902 (2005).
http://dx.doi.org/10.1063/1.2149180
11.
11.A. Jaiswal, R. Das, T. Maity, K. Vivekanand, S. Adyanthaya, and P. Poddar, J. Phys. Chem. C 114, 12432 (2010).
http://dx.doi.org/10.1021/jp102450z
12.
12.H. Fukumura, S. Matsui, H. Harima, T. Takahashi, T. Itoh, K. Kisoda, M. Tamada, Y. Noguchi, and M. Miyayama, J. Phys.: Condens. Matter 19, 365224 (2007).
http://dx.doi.org/10.1088/0953-8984/19/36/365224
13.
13.M. K. Singh, W. Prellier, M. P. Singh, R. S. Katiyar, and J. F. Scott, Phys. Rev. B 77, 144403 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.144403
14.
14.M. Cazayous, Y. Gallais, A. Sacuto, R. de Sousa, D. Lebeugle, and D. Colson, Phys. Rev. Lett. 101, 037601 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.037601
15.
15.B. Dupé, S. Prosandeev, G. Geneste, B. Dkhil, and L. Bellaiche, Phys. Rev. Lett. 106, 237601 (2011).
http://dx.doi.org/10.1103/PhysRevLett.106.237601
16.
16.S. A. T. Redfern, C. Wang, J. W. Hong, G. Catalan, and J. F. Scott, J. Phys.: Condens. Matter 20, 452205 (2008).
http://dx.doi.org/10.1088/0953-8984/20/45/452205
17.
17.J. Wu, J. Wang, D. Xiao, and J. Zhu, ACS Appl. Mater. Interfaces 3, 2504 (2011).
http://dx.doi.org/10.1021/am2003747
18.
18.C. Wang, K.-j. Jin, Z.-t. Xu, L. Wang, C. Ge, H.-b. Lu, H.-z. Guo, M. He, and G.-z. Yang, Appl. Phys. Lett. 98, 192901 (2011).
http://dx.doi.org/10.1063/1.3589814
19.
19.X. Tang, J. Dai, X. Zhu, W. Song, and Y. Sun, J. Alloys Compd. 509, 4748 (2011).
http://dx.doi.org/10.1016/j.jallcom.2011.01.143
20.
20.T. L. Qu, Y. G. Zhao, D. Xie, J. P. Shi, Q. P. Chen, and T. L. Ren, Appl. Phys. Lett. 98, 173507 (2011).
http://dx.doi.org/10.1063/1.3584031
21.
21.A. Lahmar, K. Zhao, S. Habouti, M. Dietze, C. H. Solterbeck, and M. Es-Souni, Solid State Ionics 201, 1 (2011).
http://dx.doi.org/10.1016/j.ssi.2011.07.023
22.
22.J. F. Ihlefeld, C. M. Folkman, S. H. Baek, G. L. Brennecka, M. C. George, J. F. Carroll, and C. B. Eom, Appl. Phys. Lett. 97, 262904 (2010).
http://dx.doi.org/10.1063/1.3533017
23.
23.R. Zheng, X. Gao, J. Wang, and S. Ramakrishna, J. Am. Ceram. Soc. 91, 463 (2008).
http://dx.doi.org/10.1111/j.1551-2916.2007.02128.x
24.
24.V. Shelke, D. Mazumdar, G. Srinivasan, A. Kumar, S. Jesse, S. Kalinin, A. Baddorf, and A. Gupta, Adv. Mater. 23, 669 (2011).
http://dx.doi.org/10.1002/adma.201000807
25.
25.A. R. Akbarzadeh, I. Kornev, C. Malibert, L. Bellaiche, and J. M. Kiat, Phys. Rev. B 72, 205104 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.205104
26.
26.B. K. P. Scaife, Principles of Dielectrics, (Clarendon Press, Oxford, 1989).
27.
27.K. Marty, P. Bordet, V. Simonet, M. Loire, R. Ballou, C. Darie, J. Kljun, P. Bonville, O. Isnard, P. Lejay, B. Zawilski, and C. Simon, Phys. Rev. B 81, 054416 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.054416
28.
28.A. A. Nugroho, N. Bellido, U. Adem, G. Nenert, C. Simon, M. O. Tjia, M. Mostovoy, and T. T. M. Palstra, Phys. Rev. B 75, 174435 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.174435
29.
29.S. Mollah, A. K. Bera, S. Chakraborty, and B. K. Chaudhuri, Phys. Rev. B 49, 15017 (1994).
http://dx.doi.org/10.1103/PhysRevB.49.15017
30.
30.C. R. delaCruz, B. Lorenz, Y. Y. Sun, C. W. Chu, S. Park, and S. W. Cheong, Phys. Rev. B 74, 180402R (2006).
http://dx.doi.org/10.1103/PhysRevB.74.180402
31.
31.C. C. Wang and L. W. Zhang, Phys. Rev. B 74, 024106 (2006).
http://dx.doi.org/10.1103/PhysRevB.74.024106
32.
32.F. Yen, B. Lorenz, Y. Y. Sun, C. W. Chu, L. N. Bezmaternykh, and A. N. Vasiliev, Phys. Rev. B 73, 054435 (2006).
http://dx.doi.org/10.1103/PhysRevB.73.054435
33.
33.I. P. Raevski, S. A. Prosandeev, A. S. Emelyanov, S. I. Raevskaya, E. V. Colla, D. Viehland, W. Kleemann, S. B. Vakhrushev, J.-L. Dellis, M. El Marssi, and L. Jastrabik, Phys. Rev. B 72, 184104 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.184104
34.
34.F. Yen, C. R. delaCruz, B. Lorenz, Y. Y. Sun, Y. Q. Wang, M. M. Gospodinov, and C. W. Chu, Phys. Rev. B 71, 180407R (2005).
http://dx.doi.org/10.1103/PhysRevB.71.180407
35.
35.B. Lorenz, Y. Q. Wang, Y. Y. Sun, and C. W. Chu, Phys. Rev. B 70, 212412 (2004).
http://dx.doi.org/10.1103/PhysRevB.70.212412
36.
36.Z. J. Huang, Y. Cao, Y. Y. Sun, Y. Y. Xue, and C. W. Chu, Phys. Rev. B 56, 2623 (1997).
http://dx.doi.org/10.1103/PhysRevB.56.2623
37.
37.P. Mondal, D. Bhattacharya, P. Choudhury, and P. Mandal, Phys. Rev. B 76, 172403 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.172403
38.
38.W. Ratcliff, V. Kiryukhin, M. Kenzelmann, S. H. Lee, R. Erwin, J. Schefer, N. Hur, S. Park, and S. W. Cheong, Phys. Rev. B 72, 060407R (2005).
http://dx.doi.org/10.1103/PhysRevB.72.060407
39.
39.A. I. Smirnov, M. N. Popova, A. B. Sushkov, S. A. Golubchik, D. I. Khomskii, M. V. Mostovoy, A. N. Vasilev, M. Isobe, and Y. Ueda, Phys. Rev. B 59, 14546 (1999).
http://dx.doi.org/10.1103/PhysRevB.59.14546
40.
40.J.-S. Jung, A. Iyama, H. Nakamura, M. Mizumaki, N. Kawamura, Y. Wakabayashi, and T. Kimura, Phys. Rev. B 82, 212403 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.212403
41.
41.R. Tackett, G. Lawes, B. C. Melot, M. Grossman, E. S. Toberer, and R. Seshadri, Phys. Rev. B 76, 024409 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.024409
42.
42.T. Katsufuji, S. Mori, M. Masaki, Y. Moritomo, N. Yamamoto, and H. Takagi, Phys. Rev. B 64, 104419 (2001).
http://dx.doi.org/10.1103/PhysRevB.64.104419
43.
43.S. P. Singh, A. K. Singh, D. Pandey, and S. M. Yusuf, Phys. Rev. B 76, 054102 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.054102
44.
44.D. Sheen and J.-J. Kim, Phys. Rev. B 67, 144102 (2003).
http://dx.doi.org/10.1103/PhysRevB.67.144102
45.
45.C. S. Tu, F. C. Chao, C. H. Yeh, C. L. Tsai, and V. H. Schmidt, Phys. Rev. B 60, 6348 (1999).
http://dx.doi.org/10.1103/PhysRevB.60.6348
46.
46.F. Mezzadri, G. Calestani, M. Calicchio, E. Gilioli, F. Bolzoni, R. Cabassi, M. Marezio, and A. Migliori, Phys. Rev. B 79, 100106R (2009).
http://dx.doi.org/10.1103/PhysRevB.79.100106
47.
47.R. V. Hippel, Dielectrics and Waves, (the M.I.T. Press, Massachusetts Institute of Technology, Cambridge, Massachusetts, 1954).
48.
48.K. Kan-Ichi, T. Fujimura, and T. Yamakami, Science reports of the Research Institutes, Tohoku University. Ser. A, Physics, chemistry and metallurgy 19, 125 (1967).
49.
49.S. Deshpande, S. Achary, R. Mani, J. Gopalakrishnan, and A. Tyagi, Phys. Rev. B 84, (2011).
http://dx.doi.org/10.1103/PhysRevB.84.064301
50.
50.C. H. Hsu and F. Mansfeld, Corrosion science section 57, 747 (2001).
51.
51.L. Nyikos and T. Pajkossy, Electrochim. Acta 30, 1533 (1985).
http://dx.doi.org/10.1016/0013-4686(85)80016-5
52.
52.S. H. Liu, Phys. Rev. Lett. 55, 529 (1985).
http://dx.doi.org/10.1103/PhysRevLett.55.529
53.
53.T. Kaplan and L. J. Gray, Phys. Rev. B 32, 7360 (1985).
http://dx.doi.org/10.1103/PhysRevB.32.7360
54.
54.T. Kaplan, S. H. Liu, and L. J. Gray, Phys. Rev. B 34, 4870 (1986).
http://dx.doi.org/10.1103/PhysRevB.34.4870
55.
55.J. F. Scott, R. Palai, A. Kumar, M. K. Singh, N. M. Murari, N. K. Karan, and R. S. Katiyar, J. Am. Ceram. Soc. 91, 1762 (2008).
http://dx.doi.org/10.1111/j.1551-2916.2008.02404.x
56.
56.F. D. Morrison, D. J. Jung, and J. F. Scott, J. Appl. Phys. 101, 094112 (2007).
http://dx.doi.org/10.1063/1.2723194
57.
57.G. Catalan, H. Béa, S. Fusil, M. Bibes, P. Paruch, A. Barthélémy, and J. F. Scott, Phys. Rev. Lett. 100, 027602 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.027602
58.
58.R. K. Vasudevan, Y.-C. Chen, H.-H. Tai, N. Balke, P. Wu, S. Bhattacharya, L. Q. Chen, Y.-H. Chu, I.-N. Li, S. V. Kalinin, and V. Nagarajan, ACS Nano 5, 879 (2011).
http://dx.doi.org/10.1021/nn102099z
59.
59.V. D. Jovic, Distributed Courtesy of Research Solutions and Resources, http://www.ConsultRSR.com (2003).
60.
60.A. K. Jonscher, Universal Relaxation Law, (Chelsea Dielectrics Press, London, 1996).
http://aip.metastore.ingenta.com/content/aip/journal/adva/2/2/10.1063/1.4721670
Loading
/content/aip/journal/adva/2/2/10.1063/1.4721670
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/2/2/10.1063/1.4721670
2012-05-17
2016-09-29

Abstract

We report the detailed study on the low temperature dielectric dynamics of the epitaxial BiFeO3thin filmsgrown on Nb-doped SrTiO3 substrate. The results indicate that the contributions from the thin film dominate the dielectric response, although it comes from both the thin film and the electrode interface. Furthermore, the origins of the low temperature dielectric anomalies are investigated with electric circuit fittings. A possible phase transition at 210 K is revealed from analysis with dielectric loss tangent. The dielectric constants obtained from the constant phase elements (CPEs) are more than 400 even at low temperatures. Finally, the physical significances of the CPE model are discussed.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/2/2/1.4721670.html;jsessionid=xJUIHvKWXPO2pl5_4Uws8ZmA.x-aip-live-02?itemId=/content/aip/journal/adva/2/2/10.1063/1.4721670&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/2/2/10.1063/1.4721670&pageURL=http://scitation.aip.org/content/aip/journal/adva/2/2/10.1063/1.4721670'
Right1,Right2,Right3,