Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.H. Kambayashi, Y. Satoh, S. Ootomo, T. Kokawa, T. Nomura, S. Kato, and T. P. Chow, Solid -State Electron. 54, 660 (2010).
2.J. J. Freedsman, T. Kubo, S. L. Selvaraj, and T. Egawa, Jpn. J. Appl. Phys. 50, 04DFO31 (2011).
3.R. Stoklas, D. Gregusova, J. Novak, A. Vescan, and P. Kordos, Appl. Phys. Lett. 93, 124103 (2008).
4.C. C. Hu, M. S. Lin, T. Y. Wu, F. Adriyanto, P. W. Sze, C. L. Wu, and Y. H. Wang, IEEE Trans. Electron Devices. 59, 121 (2012).
5.Z. H. Liu, G. I. Ng, S. Arulkumaran, Y. K. T. Maung, and H. Zhou, Appl.Phys. Lett. 98, 163501 (2011).
6.D. Deen, D. Storm, D. Meyer, D. Scott Katzer, R. Bass, S. Binari, and T. Gougousi, Phy. Status. Solidi C 8, 2420 (2011).
7.F. Roccaforte, G. Greco, P. Fiorenza, V. Raineri, G. Malandrino, and R. L. Nigro, Appl.Phys. Lett. 100, 063511 (2012).
8.T. H. Hung, M. Esposto, and S. Rajan, Appl.Phys. Lett. 99, 162104 (2011).
9.M. Fagerlind, F. Allerstam, E. O. Sveinbjornssorn, N. Rorsman, A. K. Georgieva, A. Lunndskog, U. Forsberg, and E. Janzen, J. Appl. Phys. 108, 014508 (2010).
10.C. Mizue, Y. Hori, M. Miczek, and T. Hashizume, Jpn. J. Appl. Phys. 49, 021001 (2011).
11.K. D. Chabak, D. E. Walker, M. R. Johnson, A. Respo, A. M. Dabiran, D. J. Smith, A. M. Wowchak, S. K. Tetlak, M. Kossler, J. K. Gillespie, R. C. Fitch, and M. Trejo, IEEE Electron Device Lett. 32, 1677 (2011).
12.K. H. Lee, P. C. Chang, and S. J. Chang, Appl.Phys. Lett. 99, 153505 (2011).
13.J. J. Freedsman, T. Kubo, and T. Egawa, Appl.Phys. Lett. 99, 033504 (2011).
14.K. Schroder, Semiconductor material and device characterization (Wiley, Hoboken, NJ, 2006) 3rd ed., p. 277.
15.J. Miller, X. Z. Dang, H. H. Wieder, P. M. Asbeck, and E. T. Yu, J.of Appl. Phys. 87, 8070 (2000).
16.P. Kordas, R. Stoklas, D. Gregusova, and J. Novak, Appl.Phys. Lett. 94, 223512 (2009).
17.L. Semra, A. Telia, and A. Soltani, Surface and Interface Analysis 42, 799 (2010).
18.S. Xie, J. Yin, S. Zhang, B. Liu, W. Zhou, and Z. Feng, Solid -State Electron. 53, 1183 (2009).
19.M. Nakagiri, Jpn. J. Appl. Phys. 13, 1610 (1974).
20.K. M. Brunson, D. Sands, C. B. Thomas, and H. S. Reehai, J. Appl. Phys. 62, 185 (1987).
21.E. Arslan, S. Butun, Y. Safak, H. Cakmak, H. Yu, and E. Ozbay, Microelectrocnics Reliab. 51, 576 (2011).
22.D. Cho, M. Shimizu, T. Ide, H. Ookita, and H. Okumura, Jpn. J. Appl.Phys. 41, 4481 (2002).
23.S. Imanaga, F. Nakmura, and H. Kawai, Jpn. J. Appl. Phys. 40, 1194 (2001).
24.Z. H. Liu, G. I. Ng, H. Zhou, S. Arulkumaran, and Y. K. T. Maung, Appl.Phys. Lett. 98, 113506 (2011).
25.M. Tapajna, S. W. Kaun, M. H. Wong, F. Gao, T. Palacios, U. K. Mishra, J. S. Speck, and M. Kuball, Appl.Phys. Lett. 99, 223501 (2011).
26.S. Arulkumaran, S. Vickesh, G. I. Ng, Z. H. Liu, M. Bryan, and C. H. Lee, Electrochem. Solid-State. Lett. 13, H169 (2010).
27.See supplementary material at for three terminal off-state breakdown characteristics of AlN/AlGaN/GaN HFET grown on silicon substrate.[Supplementary Material]
28.W. Saito, M. Kuraguchi, Y. Takada, K. Tsuda, I. Omura, and T. Ogura, IEEE Trans. Electron Devices. 52, 159 (2005).

Data & Media loading...


Article metrics loading...



The trapping properties of in-situmetal-organic chemical vapor deposition(MOCVD) grown AlN/AlGaN/GaN metal-insulator-semiconductorheterostructurefield-effect transistors (MIS-HFETs) with AlN layers grown at 600 and 700 °C has been quantitatively analyzed by frequency dependent parallel conductance technique. Both the devices exhibited two kinds of traps densities, due to AlN (D T-AlN ) and AlGaN layers (D T-AlGaN ) respectively. The MIS-HFET grown at 600 °C showed a minimum D T-AlN and D T-AlGaN of 1.1 x 1011 and 1.2 x 1010 cm-2eV-1 at energy levels (E T ) -0.47 and -0.36 eV. Further, the gate-lag measurements on these devices revealed less degradation ∼ ≤ 5% in drain current density (I ds-max ). Meanwhile, MIS-HFET grown at 700 °C had more degradation in I ds-max ∼26 %, due to high D T-AlN and D T-AlGaN of 3.4 x 1012 and 5 x 1011 cm-2eV-1 positioned around similar E T. The results shows MIS-HFET grown at 600 °C had better device characteristics with trap densities one order of magnitude lower than MIS-HFET grown at 700 °C.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd