1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Image acceleration in parallel magnetic resonance imaging by means of metamaterial magnetoinductive lenses
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/2/2/10.1063/1.4723675
1.
1. R. Marques, F. Martin, and M. Sorolla, Metamaterials with Negative Parameters: Theory and Microwave Applications (Wiley, Hoboken, New Jersey, 2008).
2.
2. M. C. K. Wiltshire, J. B. Pendry, I. R. Young, D. J. Larkman, D. J. Gilderdale, and J. V. Hajnal, Science 291, 849 (2001).
http://dx.doi.org/10.1126/science.291.5505.849
3.
3. V. C. Behr, A. Haase, and P. M. Jakob, Concepts in Magnetic Resonance Part B (Magnetic Resonance Engineering) 23B(1), 44 (2004).
http://dx.doi.org/10.1002/cmr.b.20019
4.
4. M. Allard, M. C. K. Wiltshire, J. V. Hajnal, and R. M. Henkelman, Proc. Intl. Soc. Mag. Reson. Med. 13, 871 (2005).
5.
5. M. Allard and R. M. Henkelman, J. Magn. Reson. 182, 200 (2006).
http://dx.doi.org/10.1016/j.jmr.2006.06.029
6.
6. X. Radu, D. Garray, and C. Craeye, Metamaterials 3, 90 (2009).
http://dx.doi.org/10.1016/j.metmat.2009.07.005
7.
7. L. Jelinek, R. Marques, and M. J. Freire, J. Appl. Phys. 105, 024907 (2009).
http://dx.doi.org/10.1063/1.3067788
8.
8. M. J. Freire, R. Marques, and L. Jelinek, Appl. Phys. Lett. 93, 231108 (2008).
http://dx.doi.org/10.1063/1.3043725
9.
9. M. J. Freire, L. Jelinek, R. Marques, and M. Lapine, J. Magn. Res. 203, 81 (2010).
http://dx.doi.org/10.1016/j.jmr.2009.12.005
10.
10. J. M. Algarin, M. J. Freire, M. A. Lopez, M. Lapine, P. M. Jakob, V. C. Behr, and R. Marques, Appl. Phys. Lett. 98, 014105 (2011).
http://dx.doi.org/10.1063/1.3533394
11.
11. J. M. Algarin, M. A. Lopez, M. J. Freire, and R. Marques, New J. Phys. 13, 115006 (2011).
http://dx.doi.org/10.1088/1367-2630/13/11/115006
12.
12. M. A. Lopez, M. J. Freire, J. M. Algarin, V. C. Behr, P. M. Jakob, and R. Marques, Appl. Phys. Lett. 98, 133508 (2011).
http://dx.doi.org/10.1063/1.3574916
13.
13. J. B. Pendry, Phys. Rev. Lett. 85, 3966 (2000).
http://dx.doi.org/10.1103/PhysRevLett.85.3966
14.
14. M. A. Griswold, P. M. Jakob, M. Nittka, J. W. Goldfarb, and A. Haase, Magn. Reson. Med. 44, 602 (2000).
http://dx.doi.org/10.1002/1522-2594(200010)44:4<602::AID-MRM14>3.0.CO;2-5
15.
15. K. P. Pruessmann, M. Weiger, M. B. Scheidegger, and P. Boesiger, Magn. Reson. Med. 42, 952 (1999).
http://dx.doi.org/10.1002/(SICI)1522-2594(199911)42:5<952::AID-MRM16>3.0.CO;2-S
16.
16. M. A. Griswold, P. M. Jakob, R. M. Heidemann, M. Nittka, V. Jellus, J. Wang, B. Kiefer, and A. Haase, Magn. Reson. Med. 47, 1202 (2002).
http://dx.doi.org/10.1002/mrm.10171
17.
17. F. A. Breuer, S. A. R. Kannengiesser, M. Blaimer, N. Seiberlich, P. M. Jakob, and M. A. Griswold, Magn. Reson. Med. 62, 739 (2009).
http://dx.doi.org/10.1002/mrm.22066
18.
18. M. J. Freire and R. Marques, J. Appl. Phys. 103, 013115 (2008).
http://dx.doi.org/10.1063/1.2828176
19.
19. D. I. Hoult and R. E. Richards, J. Magn. Reson. 24, 71 (1976).
http://dx.doi.org/10.1016/0022-2364(76)90233-X
20.
20. D. I. Hoult and P. C. Lauterbur, J. Magn. Reson. 34, 425 (1979).
http://dx.doi.org/10.1016/0022-2364(79)90019-2
21.
21. C. A. Balanis, Antenna theory 3rd Edition - Analysis and design (Wiley, Hoboken, New Jersey, 2005).
22.
22. J. M. Algarin, M. J. Freire, and R. Marques, Metamaterials 5, 107 (2011).
http://dx.doi.org/10.1016/j.metmat.2011.07.001
23.
23. M. J. Freire and R. Marques, Appl. Phys. Lett. 86, 182505 (2005).
http://dx.doi.org/10.1063/1.1922074
24.
24. M. J. Freire and R. Marques, J. Appl. Phys. 100, 063105 (2006).
http://dx.doi.org/10.1063/1.2349469
25.
25. M. A. Ohliger, P. Ledden, C. A. McKenzie, and D. K. Sodickson, Magn. Reson. Med. 52, 628 (2004).
http://dx.doi.org/10.1002/mrm.20195
http://aip.metastore.ingenta.com/content/aip/journal/adva/2/2/10.1063/1.4723675
Loading
/content/aip/journal/adva/2/2/10.1063/1.4723675
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/2/2/10.1063/1.4723675
2012-05-22
2014-07-23

Abstract

Parallel Magnetic Resonance imaging (pMRI) is an image acceleration technique which takes advantage of localized sensitivities of multiple receivers. In this letter, we show that metamateriallenses based on capacitively-loaded rings can provide higher localization of coil sensitivities compared to conventional loop designs. Several lens designs are systematically analyzed in order to find the structure providing higher signal-to-noise-ratio. The magnetoinductive (MI) lens has been found to be the optimum structure and an experiment is developed to show it. The ability of the MI lens for pMRI is investigated by means of the parameter known in the MRI community as g-Factor.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/2/2/1.4723675.html;jsessionid=3bue466riv7aq.x-aip-live-02?itemId=/content/aip/journal/adva/2/2/10.1063/1.4723675&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Image acceleration in parallel magnetic resonance imaging by means of metamaterial magnetoinductive lenses
http://aip.metastore.ingenta.com/content/aip/journal/adva/2/2/10.1063/1.4723675
10.1063/1.4723675
SEARCH_EXPAND_ITEM