1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
oa
Flexoelectric coefficient measurements in the nematic liquid crystal phase of 5CB
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/2/2/10.1063/1.4723681
1.
1. R. B. Meyer, Phys. Rev. Lett. 22, 918 (1969).
http://dx.doi.org/10.1103/PhysRevLett.22.918
2.
2. P.-G. de Gennes and J. Prost, The Physics of Liquid Crystals, 2nd ed. (Oxford University Press, Oxford, 1993) p. 136.
3.
3. F. Castles, S. M. Morris, E. M. Terentjev, and H. J. Coles, Phys. Rev. Lett. 104, 157801 (2010).
http://dx.doi.org/10.1103/PhysRevLett.104.157801
4.
4. T. Porenta, M. Ravnik, and S. Zumer, Soft Matter 7, 132 (2011).
http://dx.doi.org/10.1039/c0sm00546k
5.
5. J. S. Patel and R. B. Meyer, Phys. Rev. Lett. 58, 1538 (1987).
http://dx.doi.org/10.1103/PhysRevLett.58.1538
6.
6. G. P. Bryan-Brown, C. V. Brown, and J. C. Jones, U.S. Patent No. 6249332 (2001).
7.
7. B. J. Broughton, M. J. Clarke, A. E. Blatch, and H. J. Coles, J. Appl. Phys. 98, 034109 (2005).
http://dx.doi.org/10.1063/1.2006227
8.
8. H. J. Coles, M. J. Coles, B. J. Broughton, and S. M. Morris, Patent No. WO/2006/003441 (2006).
9.
9. H. J. Coles, M. J. Clarke, S. M. Morris, B. J. Broughton, and A. E. Blatch, J. Appl. Phys. 99, 034104 (2006).
http://dx.doi.org/10.1063/1.2166643
10.
10. A. J. Davidson, S. J. Elston, and E. P. Raynes, J. Appl. Phys. 99, 093109 (2006).
http://dx.doi.org/10.1063/1.2199973
11.
11. F. Castles, S. M. Morris, and H. J. Coles, Phys. Rev. E 80, 031709 (2009).
http://dx.doi.org/10.1103/PhysRevE.80.031709
12.
12. J. Chen, S. M. Morris, T. D. Wilkinson, J. P. Freeman, and H. J. Coles, Opt. Express 17, 7130 (2009).
http://dx.doi.org/10.1364/OE.17.007130
13.
13. G. Carbone, P. Salter, S. J. Elston, P. Raynes, L. D. Sio, S. Ferjani, G. Strangi, C. Umeton, and R. Bartolino, Appl. Phys. Lett. 95, 011102 (2009).
http://dx.doi.org/10.1063/1.3159624
14.
14. P. S. Salter, S. J. Elston, E. P. Raynes, and L. A. Parry-Jones, Jpn. J. Appl. Phys. 48, 101302 (2009).
http://dx.doi.org/10.1143/JJAP.48.101302
15.
15. F. Castles, S. M. Morris, D. J. Gardiner, Q. M. Malik, and H. J. Coles, J. Soc. Info. Disp. 18, 128 (2010).
http://dx.doi.org/10.1889/JSID18.2.128
16.
16. A. V. Zakharov, Crystallogr. Rep. 48, 689 (2003).
http://dx.doi.org/10.1134/1.1595197
17.
17. D. L. Cheung, S. J. Clark, and M. R. Wilson, J. Chem. Phys. 121, 9131 (2004).
http://dx.doi.org/10.1063/1.1802231
18.
18. A. Ferrarini, C. Greco, and G. R. Luckhurst, J. Mater. Chem. 17, 1039 (2007).
http://dx.doi.org/10.1039/b618928h
19.
19. M. Cestari, E. Frezza, A. Ferrarini, and G. R. Luckhurst, J. Mater. Chem. 21, 12303 (2011).
http://dx.doi.org/10.1039/c1jm12233a
20.
20. A. G. Petrov, Physical Properties of Liquid Crystals: Nematics (INSPEC, London, 1998) pp. 251264.
21.
21. L. A. Beresnev, L. M. Blinov, S. A. Davidyan, S. G. Kononov, and S. B. Yablonskiĭ, Pis'ma Zh. Eksp. Teor. Fiz. 45, 592 (1987).
22.
22. L. M. Blinov, L. A. Beresnev, S. A. Davidyan, S. G. Kononov, and S. V. Yablonsky, Ferroelectrics 84, 365 (1988).
http://dx.doi.org/10.1080/00150198808016233
23.
23. L. M. Blinov, G. Durand, and S. V. Yablonsky, J. Phys. II (Paris) 2, 1287 (1992).
http://dx.doi.org/10.1051/jp2:1992200
24.
24. P. R. Maheswara Murthy, V. A. Raghunathan, and N. V. Madhusudana, Liq. Cryst. 14, 483 (1993).
http://dx.doi.org/10.1080/02678299308027664
25.
25. L. M. Blinov, M. Ozaki, and K. Yoshino, Pis'ma Zh. Eksp. Teor. Fiz. 69, 220 (1999).
26.
26. L. M. Blinov, M. I. Barnik, M. Ozaki, N. M. Shtykov, and K. Yoshino, Phys. Rev. E 62, 8091 (2000).
http://dx.doi.org/10.1103/PhysRevE.62.8091
27.
27. D. R. Link, M. Nakata, Y. Takanishi, K. Ishikawa, and H. Takezoe, Phys. Rev. E 65, 010701 (2001).
http://dx.doi.org/10.1103/PhysRevE.65.010701
28.
28. L. M. Blinov, M. I. Barnik, H. Ohoka, M. Ozaki, N. M. Shtykov, and K. Yoshino, Eur. Phys. J. E 4, 183 (2001).
http://dx.doi.org/10.1007/s101890170127
29.
29. H. Ohoka, M. Ozaki, L. M. Blinov, M. I. Barnik, N. M. Shtykov, and K. Yoshino, Mol. Cryst. Liq. Cryst. 366, 283 (2001).
http://dx.doi.org/10.1080/10587250108023971
30.
30. M. J. Clarke, B. Musgrave, M. J. Coles, A. E. Blatch, and H. J. Coles, Proc. SPIE 5289, 182 (2004).
http://dx.doi.org/10.1117/12.532176
31.
31. J. Harden, B. Mbanga, N. Éber, K. Fodor-Csorba, S. Sprunt, J. T. Gleeson, and A. Jákli, Phys. Rev. Lett. 97, 157802 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.157802
32.
32. For example, the sign of (e1 + e3) for 5CB is reported as negative in Ref. 22, and positive in Ref. 24.
33.
33. The value of |e3| for a certain bent-core material has been reported as 15.8 pC/m in Ref. 75 and as 62 000 pC/m in Ref. 31. However, this latter value has been shown theoretically to be essentially impossible.76
34.
34. W. Helfrich, Phys. Lett. A 35, 393 (1971).
http://dx.doi.org/10.1016/0375-9601(71)90160-5
35.
35. H. J. Deuling, Solid State Commun. 14, 1073 (1974).
http://dx.doi.org/10.1016/0038-1098(74)90275-0
36.
36. J. Prost and P. S. Pershan, J. Appl. Phys. 47, 2298 (1976).
http://dx.doi.org/10.1063/1.323021
37.
37. A. I. Derzhanski and H. P. Hinov, Phys. Lett. A 62, 36 (1977).
http://dx.doi.org/10.1016/0375-9601(77)90575-8
38.
38. I. Dozov, P. Martinot-Lagarde, and G. Durand, J. Phys. Lett. (Paris) 43, 365 (1982).
http://dx.doi.org/10.1051/jphyslet:019820043010036500
39.
39. S. V. Yablonskiĭ, L. M. Blinov, and S. A. Pikin, Pis'ma Zh. Eksp. Teor. Fiz. 40, 226 (1984).
40.
40. R. A. Ewings, C. Kischka, L. A. Parry-Jones, and S. J. Elston, Phys. Rev. E 73, 011713 (2006).
http://dx.doi.org/10.1103/PhysRevE.73.011713
41.
41. E. K. Tidey, L. A. Parry-Jones, and S. J. Elston, Liq. Cryst. 34, 251 (2007).
http://dx.doi.org/10.1080/02678290601097342
42.
42. B. I. Outram and S. J. Elston, Liq. Cryst. 39, 149 (2012).
http://dx.doi.org/10.1080/02678292.2011.620990
43.
43. J. S. Patel and S.-D. Lee, J. Appl. Phys. 66, 1879 (1989).
http://dx.doi.org/10.1063/1.344369
44.
44. S.-D. Lee, J. S. Patel, and R. B. Meyer, J. Appl. Phys. 67, 1293 (1990).
http://dx.doi.org/10.1063/1.345679
45.
45. S.-D. Lee, J. S. Patel, and R. B. Meyer, Mol. Cryst. Liq. Cryst. 209, 79 (1991).
http://dx.doi.org/10.1080/00268949108036180
46.
46. P. Rudquist, The flexoelectro-optic effect in cholesteric liquid crystals, Ph.D. thesis, Chalmers University of Technology (1997) .
47.
47. B. Musgrave, P. Lehmann, and H. J. Coles, Mol. Cryst. Liq. Cryst. 328, 309 (1999).
http://dx.doi.org/10.1080/10587259908026072
48.
48. B. Musgrave, P. Lehmann, and H. J. Coles, Liq. Cryst. 26, 1235 (1999).
http://dx.doi.org/10.1080/026782999204255
49.
49. H. J. Coles, B. Musgrave, M. J. Coles, and J. Willmott, J. Mater. Chem. 11, 2709 (2001).
http://dx.doi.org/10.1039/b105647f
50.
50. S. M. Morris, M. J. Clarke, A. E. Blatch, and H. J. Coles, Phys. Rev. E 75, 041701 (2007).
http://dx.doi.org/10.1103/PhysRevE.75.041701
51.
51. P. S. Salter, C. Kischka, S. J. Elston, and E. P. Raynes, Liq. Cryst. 36, 1355 (2009).
http://dx.doi.org/10.1080/02678290903233991
52.
52. P. S. Salter, C. Tschierske, S. J. Elston, and E. P. Raynes, Phys. Rev. E 84, 031708 (2011).
http://dx.doi.org/10.1103/PhysRevE.84.031708
53.
53. K. L. Atkinson, S. M. Morris, F. Castles, M. M. Qasim, D. J. Gardiner, and H. J. Coles, Phys. Rev. E 85, 012701 (2012).
http://dx.doi.org/10.1103/PhysRevE.85.012701
54.
54. S.-E. Lee, S.-K. Lee, H.-S. Jin, W.-H. Park, K. Skjonnemand, D. Wilkes, K. Adlem, P. E. Saxton, and O. L. Parri, Patent No. WO/2011/137986 (2006).
55.
55. Joint Committee for Guides in Metrology, Evaluation of measurement data – Guide to the expression of uncertainty in measurement, 1st ed. (2008).
56.
56. F. Castles, Highly flexoelectric liquid crystals, Ph.D. thesis, University of Cambridge (2010) .
57.
57. D. R. Corbett and S. J. Elston, Phys. Rev. E 84, 041706 (2011).
http://dx.doi.org/10.1103/PhysRevE.84.041706
58.
58. The calculation required a value of the twist elastic constant, for which K2 = 3.3 pN was used (at a reduced temperature of ≈0.98 to be consistent with our other input values) from Ref. 61: although the essential result is not particularly sensitive to the exact value of K2 used.
59.
59. A. I. Hopwood and H. J. Coles, Mol. Cryst. Liq. Cryst. 130, 281 (1985).
http://dx.doi.org/10.1080/00268948508079517
60.
60. A. I. Hopwood and H. J. Coles, Polymer 26, 1312 (1985).
http://dx.doi.org/10.1016/0032-3861(85)90305-2
61.
61. H. J. Coles and M. S. Sefton, Mol. Cryst. Liq. Cryst. Lett. 1, 151 (1985).
62.
62. H. J. Coles and A. I. Hopwood, Mol. Cryst. Liq. Cryst. Lett. 1, 165 (1985).
63.
63. M. J. Bradshaw, E. P. Raynes, J. D. Bunning, and T. E. Faber, J. Phys. (Paris) 46, 1513 (1985).
http://dx.doi.org/10.1051/jphys:019850046090151300
64.
64. V. Fréedericksz and A. Repiewa, Z. Phys. 42, 532 (1927).
http://dx.doi.org/10.1007/BF01397711
65.
65. V. Fréedericksz and V. Zolina, Trans. Faraday Soc. 29, 919 (1933).
http://dx.doi.org/10.1039/tf9332900919
66.
66. I. W. Stewart, The Static and Dynamic Continuum Theory of Liquid Crystals (Taylor & Francis, London, 2004) p. 72.
67.
67. D. Meyerhofer, J. Appl. Phys. 46, 5084 (1975).
http://dx.doi.org/10.1063/1.322188
68.
68. F. Grandjean, C. R. Acad. Sci. 172, 71 (1921).
69.
69. R. Cano, Bull. Soc. fr. Minéral. Cristallogr. 90, 333 (1967).
70.
70. P. Kassubeck and G. Meier, Mol. Cryst. Liq. Cryst. 8, 305 (1969).
http://dx.doi.org/10.1080/15421406908084911
71.
71. The temperature as determined by the readout of the hot-stage controller is precise (to the nearest 0.01°C), but not necessarily accurate. However, the value of Tc as determined using a hot-stage and hot-stage controller with a Fréedericksz cell was 35.51 °C, which supports the supplier's value.
72.
72. J.-H. Lee, T.-H. Yoon, and E.-J. Choi, Soft Matter 8, 2370 (2012).
http://dx.doi.org/10.1039/c2sm07270j
73.
73. G. P. Alexander and J. M. Yeomans, Phys. Rev. E 74, 061706 (2006).
http://dx.doi.org/10.1103/PhysRevE.74.061706
74.
74. C. V. Brown and N. J. Mottram, Phys. Rev. E 68, 031702 (2003).
http://dx.doi.org/10.1103/PhysRevE.68.031702
75.
75. K. V. Le, F. Araoka, K. Fodor-Csorba, K. Ishikawa, and H. Takezoe, Liq. Cryst. 36, 1119 (2009).
http://dx.doi.org/10.1080/02678290902854086
76.
76. F. Castles, S. M. Morris, and H. J. Coles, AIP Adv. 1, 032120 (2011).
http://dx.doi.org/10.1063/1.3624725
http://aip.metastore.ingenta.com/content/aip/journal/adva/2/2/10.1063/1.4723681
Loading
/content/aip/journal/adva/2/2/10.1063/1.4723681
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/2/2/10.1063/1.4723681
2012-05-22
2014-10-21

Abstract

We report measurements of the bulk flexoelectric coefficient (e 1e 3) of 5CB (4-Cyano-4-pentylbiphenyl), in the temperature range 20–34 °C, with a relative combined standard uncertainty of 2 %. The chiral flexoelectro-optic method was used with 1 wt % high-twisting-power chiral additive. At 25 °C, (e 1e 3) = 7.10 pC/m with a combined standard uncertainty of 0.14 pC/m.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/2/2/1.4723681.html;jsessionid=6knc96sro0iod.x-aip-live-06?itemId=/content/aip/journal/adva/2/2/10.1063/1.4723681&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Flexoelectric coefficient measurements in the nematic liquid crystal phase of 5CB
http://aip.metastore.ingenta.com/content/aip/journal/adva/2/2/10.1063/1.4723681
10.1063/1.4723681
SEARCH_EXPAND_ITEM