Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.M. H. Huang, S. Mao, H. Feik, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, Science 292, 1897 (2001).
2.Y. Ryu, T. S. Lee, J. A. Lubguban, Henry W. White, Bong-Jin Kim, Yoon-Soo Park, and Chang-Joo Youn, Appl. Phys. Lett. 88, 241108 (2006).
3.C. P. Chen, M. Y. Ke, C. C. Liu, and Y. J. Chang, Appl. Phys. Lett. 91, 091107 (2009).
4.J. D. Ye, S. L. Gu, S. M. Zhu, W. Liu, S. M. Liu, R. Zhang, Y. Shi, and Y. D. Zheng, Appl. Phys. Lett. 88, 182112 (2006).
5.S. T. Tan, X. W. Sun, J. L. Zhao, S. Iwan, Z. H. Cen, T. P. Chen, J. D. Ye, G. Q. Lo, D. L. Kwong, and K. L. Teo, Appl. Phys. Lett. 93, 013506 (2006).
6.P. L. Chen, X. Y. Ma, and D. R. Yang, J. Appl. Phys. 101, 053103 (2007).
7.X. W. Sun, J. L. Zhao, S. T. Tan, L. H. Tan, C. H. Tung, G. Q. Lo, D. L. Kwong, Y. W. Zhang, X. M. Li, and K. L. Teo, Appl. Phys. Lett. 92, 111113 (2008).
8.M. H. Sun, Q. F. Zhang, H. Sun, J. Y. Zhang, and J. L. Wu, J. Vac. Sci. Technol. B 27, 618 (2009).
9.M. A. Zimmler, T. Voss, C. Ronning, and F. Capasso, Appl. Phys. Lett. 94, 241120 (2009).
10.K. Iwata, P. Fons, S. Niki, A. Yamada, K. Matsubara, K. Nakahara, T. Tanabe, and H. Takasu, Journal of Crystal Growth 214-215, 50 (2000).
11.Walter Water and Sheng-Yuan Chu, Materials Letters 55, 6772 (2002).
12.B. S. Li, Y. C. Liu, Z. S. Chu, D. Z. Shen, Y. M. Lu, J. Y. Zhang, and X. W. Fan, J Appl Phys. 91, 501 (2002).
13.P. Schroeder, M. Kast, E. Halwax, C. Edtmaier, O. Bethge, and H. Brückl, J Appl Phys. 105, 104307 (2009).
14.A. Mang, K. Reimann, and St. Rübenacke, Solid State Commun. 94, 251 (1995).
15.L. T. Romano, R. D. Bringans, X. Zhou, and W. P. Kirk, Phys. Rev. B 52, 11201 (1995).
16.J. W. Lee, J. H. Choi, S. K. Han, S. M. Yang, S. K. Hong, and J. Y. Lee, Journal of Crystal Growth 310, 11181123 (2008).
17.X. N. Wang, Y. Wang, Z. X. Mei, J. Dong, Z. Q. Zeng, H. T. Yuan, T. C. Zhang, and X. L. Du, Appl. Phys. Lett. 90, 151912 (2007).

Data & Media loading...


Article metrics loading...



To improve the quality of ZnOthin film overgrown on Si(100) substrate at RT (room temperature), the Si(100) surface was pretreated with different methods. The influence of interface on the overgrown ZnO layers was investigated by atomic force microscopy, photoluminescence and X-ray diffraction. We found that the nitridation pretreatment could significantly improve the quality of RT ZnOthin film through two-fold effects: one was to buffer the big lattice mismatch and ease the stress resulted from heterojunction growth; the other was to balance the interface charge, block the symmetric inheritance from the cubic Si (100) substrate and thus restrain the formation of zincblende phase.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd