1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Growth and characterization of Bi2Se3 crystals by chemical vapor transport
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/2/2/10.1063/1.4727957
1.
1. J. E. Moore, Nature 464, 194 (2010);
http://dx.doi.org/10.1038/nature08916
1.X.-L. Qi and S.-C. Zhang, Phys. Today 63, 33 (2010);
http://dx.doi.org/10.1063/1.3293411
1.M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010).
http://dx.doi.org/10.1103/RevModPhys.82.3045
2.
2. H. J. Zhang, C. X. Liu, X. L. Qi, X. Dai, Z. Fang, and S. C. Zhang, Nat. Phys. 5, 438 (2009).
http://dx.doi.org/10.1038/nphys1270
3.
3. Y. Xia, D. Qian, D. Hsieh, L. Wray, A. Pal, H. Lin, A. Bansil, D. Grauer, Y. S. Hor, R. J. Cava, and M. Z. Hasan, Nat. Phys. 5, 398 (2009).
http://dx.doi.org/10.1038/nphys1274
4.
4. Y. S. Hor, A. J. Williams, J. G. Checkelsky, P. Roushan, J. Seo, Q. Xu, H. W. Zandbergen, A. Yazdani, N. P. Ong, and R. J. Cava, Phys. Rev. Lett. 104, 057001 (2010).
http://dx.doi.org/10.1103/PhysRevLett.104.057001
5.
5. H. Köhler, Phys. Status Solidi B 58, 91 (1973).
http://dx.doi.org/10.1002/pssb.2220580109
6.
6. J. G. Analytis, R. D. McDonald, S. C. Riggs, J. H. Chu, G. S. Boebinger, and I. R. Fisher, Nat. Phys. 6, 960 (2010).
http://dx.doi.org/10.1038/nphys1861
7.
7. H. M. Benia, C. T. Lin, K. Kern, and C. R. Ast, Phys. Rev. Lett. 107, 177602 (2011).
http://dx.doi.org/10.1103/PhysRevLett.107.177602
8.
8. Z. Ren, A. A. Taskin, S. Sasaki, K. Segawa, and Y. Ando, Phys. Rev. B 84, 075316 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.075316
9.
9. Xi Chen, Xu-Cun Ma, Ke He, Jin-Feng Jia, and Qi-Kun Xue, Adv. Mater. 23, 1162 (2011).
http://dx.doi.org/10.1002/adma.201003855
10.
10. G. H. Zhang, H. J. Qin, J. Teng, J. D. Guo, Q. L. Guo, X. Dai, Z. Fang, and K. H. Wu, Appl. Phys. Lett. 95, 053114 (2009).
http://dx.doi.org/10.1063/1.3200237
11.
11. A. Richardella, D. M. Zhang, J. S. Lee, A. Koser, D. W. Rench, A. L. Yeats, B. B. Buckley, D. D. Awschalom, and N. Samarth, Appl. Phys. Lett. 97, 262104 (2010).
http://dx.doi.org/10.1063/1.3532845
12.
12. X. F. Kou, L. He, F. X. Xiu, M. R. Lang, Z. M. Liao, Y. Wang, A. V. Fedorov, X. X. Yu, J. S. Tang, G. Huang, X. W. Jiang, J. F. Zhu, J. Zou, and K. L. Wang, Appl. Phys. Lett. 98, 242102 (2011).
http://dx.doi.org/10.1063/1.3599540
13.
13. Phillip Tabor, Cameron Keenan, Sergei Urazdhin, and David Lederman, Appl. Phys. Lett. 99, 013111 (2011).
http://dx.doi.org/10.1063/1.3609326
14.
14. Desheng Kong, Jason C. Randel, Hailin Peng, Judy J. Cha, Stefan Meister, Keji Lai, Yulin Chen, Zhi-Xun Shen, Hari C. Manoharan, and Yi Cui, Nano Lett. 10, 329 (2010);
http://dx.doi.org/10.1021/nl903663a
14.Desheng Kong, Wenhui Dang, Judy J. Cha, Hui Li, Stefan Meister, Hailin Peng, Zhongfan Liu, and Yi Cui, Nano Lett. 10, 2245 (2010).
http://dx.doi.org/10.1021/nl101260j
15.
15. S. Y. F. Zhao, C. Beekman, L. J. Sandilands, J. E. J. Bashucky, D. Kwok, N. Lee, A. D. LaForge, S. W. Cheong, and K. S. Burch, Appl. Phys. Lett. 98, 141911 (2011).
http://dx.doi.org/10.1063/1.3573868
16.
16. R. Nitsche, H. U. Bolsterli, and M. Lichtensteiger, J. Phys. Chem. Solids 21, 199 (1961);
http://dx.doi.org/10.1016/0022-3697(61)90098-1
16.H. Schäfer, Chemical Transport Reactions (Academic Press, New York, 1963).
17.
17. D. Cubicciotti and F. J. Keneshea, J. Phys. Chem. 63, 295 (1959);
http://dx.doi.org/10.1021/j150572a038
17.J. H. Kim and S. Blairs, J. Chem. Thermodyn. 22, 803 (1990).
http://dx.doi.org/10.1016/0021-9614(90)90072-X
18.
18. R. W. G. Wyckoff, Crystal Structures 2 (J. Wiley and Sons, New York, 1964);
18.L. Pauling, Am. Mineral. 60, 994 (1975).
19.
19. K. Kuroda, M. Arita, K. Miyamoto, M. Ye, J. Jiang, A. Kimura, E. E. Krasovskii, E. V. Chulkov, H. Iwasawa, T. Okuda, K. Shimada, Y. Ueda, H. Namatame, and M. Taniguchi, Phys. Rev. Lett. 105, 076802 (2010);
http://dx.doi.org/10.1103/PhysRevLett.105.076802
19.J. G. Analytis, J. H. Chu, Y. L. Chen, F. Corredor, R. D. McDonald, Z. X. Shen, and I. R. Fisher, Phys. Rev. B 81, 205407 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.205407
20.
20. T. Plechacek, J. Navratil, and J. Horak, J. Solid State Chem. 165, 35 (2002).
http://dx.doi.org/10.1006/jssc.2001.9486
21.
21. Y. S. Hor, A. Richardella, P. Roushan, Y. Xia, J. G. Checkelsky, A. Yazdani, M. Z. Hasan, N. P. Ong, and R. J. Cava, Phys. Rev. B 79, 195208 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.195208
22.
22. N. P. Butch, K. Kirshenbaum, P. Syers, A. B. Sushkov, G. S. Jenkins, H. D. Drew, and J. Paglione, Phys. Rev. B 81, 241301R (2010).
http://dx.doi.org/10.1103/PhysRevB.81.241301
23.
23. K. Eto, Z. Ren, A. A. Taskin, K. Segawa, and Y. Ando, Phys. Rev. B 81, 195309 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.195309
24.
24. Z. Ren, A. A. Taskin, S. Sasaki, K. Segawa, and Y. Ando, Phys. Rev. B 82, 241306R (2010).
http://dx.doi.org/10.1103/PhysRevB.82.241306
25.
25. J. L. Zhang, S. J. Zhang, H. M. Weng, W. Zhang, L. X. Yang, Q. Q. Liu, S. M. Feng, X. C. Wang, R. C. Yu, L. Z. Cao, L. Wang, W. G. Yang, H. Z. Liu, W. Y. Zhao, S. C. Zhang, X. Dai, Z. Fang, and C. Q. Jin, Proc. Natl. Acad. Sci. USA 108, 24 (2011);
http://dx.doi.org/10.1073/pnas.1014085108
25.Chao Zhang, Liling Sun, Zhaoyu Chen, Xingjiang Zhou, Qi Wu, Wei Yi, Jing Guo, Xiaoli Dong, and Zhongxian Zhao, Phys. Rev. B 83, 104504R (2011).
http://dx.doi.org/10.1103/PhysRevB.83.104504
26.
26. S. M. Young, S. Chowdhury, E. J. Walter, E. J. Mele, C. L. Kane, and A. M. Rappe, Phys. Rev. B 84, 085106 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.085106
27.
27. J. J. Hamlin, J. R. Jeffries, N. P. Butch, P. Syers, D. A. Zocco, S. T. Weir, Y. K. Vohra, J. Paglione, and M. B. Maple, J. Phys. Condensed Matter 24, 035602 (2012).
http://dx.doi.org/10.1088/0953-8984/24/3/035602
http://aip.metastore.ingenta.com/content/aip/journal/adva/2/2/10.1063/1.4727957
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

Sketch of the CVT for the crystal growth of Bi2Se3. The quartz glass ampoule was hanged inside a vertical furnace. The source Bi2Se3 powders and small amount of iodine were placed in the upper chamber of the ampoule. Bi2Se3 crystals grow at the bottom. The left diagram shows the approximate temperature profile during the crystal growth.

Image of FIG. 2.

Click to view

FIG. 2.

Characterizations of the Bi2Se3 crystals by various measurements. (a) photos under an optical microscope; (b) and (c) SEM images of the (0001) and (1000) planes; (d) a typical EDX spectrum; (e) angle-resolved photoemission spectroscopy showing a Dirac point 0.38 eV below the Fermi level; (f) x-ray diffraction showing multiple (001) reflections.

Image of FIG. 3.

Click to view

FIG. 3.

Temperature dependence of in-plane resistivity ρab for several Bi2Se3 crystals. For comparison, the data are all normalized to the room-temperature resistivity, and the data from the crystal grown by the Bridgman method are also plotted (black squares). CVT #1 (red circles) and CVT #2 (green triangles) were the crystals grown at two different places. On the sample of CVT #3 (blue diamonds), both ρab and ρc were measured simultaneously. Pressure effect was studied later on the CVT-grown sample (CVT #4, magenta stars).

Image of FIG. 4.

Click to view

FIG. 4.

Temperature dependence of anisotropic resistivity in the Bi2Se3 crystals grown by CVT. Note the different scales for ρab(T), ρc(T) and ρc(T)/ρab(T).

Image of FIG. 5.

Click to view

FIG. 5.

Hall coefficient as a function of temperature for the CVT-grown Bi2Se3 crystals. The inset shows the linear field dependence of Hall resistance at 2 K and 200 K.

Image of FIG. 6.

Click to view

FIG. 6.

Temperature dependence of resistivity under high pressures for the Bi2Se3 crystals grown by CVT. The inset shows an enlarged plot for the low-temperature data.

Loading

Article metrics loading...

/content/aip/journal/adva/2/2/10.1063/1.4727957
2012-06-04
2014-04-17

Abstract

Regularly-shaped high-quality Bi2Se3 crystals were grown by a chemical vapor transport using iodine as the transport agent. In addition to exhibiting a characteristic Dirac cone for a topological insulator, the Bi2Se3 crystals show some outstanding properties including additional crystallographic surfaces, large residual resistance ratio (∼10), and high mobility (∼8000 cm2·V−1·s−1). The low-temperature resistivity abnormally increases with applying pressures up to 1.7 GPa, and no superconductivity was observed down to 0.4 K.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/2/2/1.4727957.html;jsessionid=xjxx6iywvgi9.x-aip-live-03?itemId=/content/aip/journal/adva/2/2/10.1063/1.4727957&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Growth and characterization of Bi2Se3 crystals by chemical vapor transport
http://aip.metastore.ingenta.com/content/aip/journal/adva/2/2/10.1063/1.4727957
10.1063/1.4727957
SEARCH_EXPAND_ITEM