1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
oa
Effect of catalyst nanoparticle size on growth direction and morphology of InN nanowires
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/2/2/10.1063/1.4729916
1.
1. Alfredo M. Morales and Charles M. Lieber, Science 279, 208 (1998).
http://dx.doi.org/10.1126/science.279.5348.208
2.
2. Y. Li, F. Qian, J. Xiang, and C. M. Lieber, Materials Today 9, 18 (2006).
http://dx.doi.org/10.1016/S1369-7021(06)71650-9
3.
3. H. Liu, L. Shi, X. Geng, R. Su, G. Cheng, and S. Xie, Nanotechnology 21, 245601 (2010).
http://dx.doi.org/10.1088/0957-4484/21/24/245601
4.
4. Y. Cai, S. K. Chan, I. K. Sou, Y. F. Chan, D. S. Su, and N. Wang, Adv. Mater. 18, 109 (2006).
http://dx.doi.org/10.1002/adma.200500822
5.
5. M. C. Putnam, M. A. Filler, B. M. Kayes, M. D. Kelzenberg, Y. Guan, N. S. Lewis, J. M. Eiler, and H. A. Atwater, Nano Lett. 8, 3109 (2008).
http://dx.doi.org/10.1021/nl801234y
6.
6. H. Wang, Z. Xie, W. Yang, J. Fang, and L. An, Cryst. Growth Des. 8, 3893 (2008).
http://dx.doi.org/10.1021/cg8002756
7.
7. R. S. Wagner and W. C. Ellis, Appl. Phys. Lett. 4, 89 (1964).
http://dx.doi.org/10.1063/1.1753975
8.
8. B. A. Wacaser, K. A. Dick, J. Johansson, M. T. Borgström, K. Deppert, and L. Samuelson, Adv. Mater. 21, 153 (2009).
http://dx.doi.org/10.1002/adma.200800440
9.
9. H. Liu, S. Xie, and G. Cheng, CrystEngComm 13, 3649 (2011).
http://dx.doi.org/10.1039/c1ce05137g
10.
10. Xu Ji, Huajun Li, Zhiguo Wu, Shuang Cheng, Hairong Hu, De Yan, Renfu Zhuo, Jun Wang, and Pengxun Yan, CrystEngComm 13, 5198 (2011).
http://dx.doi.org/10.1039/c1ce05293d
11.
11. P. Ebert, S. Schaafhausen, A. Lenz, A. Sabitova, L. Ivanova, M. Dähne, Y. L. Hong, S. Gwo, and H. Eisele, Appl. Phys. Lett. 98, 062103 (2011).
http://dx.doi.org/10.1063/1.3553022
12.
12. L. Colakerol, T. D. Veal, H. K. Jeong, L. Plucinski, A. DeMasi, T. Learmonth, P. A. Glans, S. Wang, Y. Zhang, and L. F. J. Piper, Phys. Rev. Lett. 97, 237601 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.237601
13.
13. J. Chen, G. Cheng, E. Stern, M. A. Reed, and P. Avouris, Nano lett. 7, 2276 (2007).
http://dx.doi.org/10.1021/nl070852y
14.
14. H. Ahn, Y. J. Yeh, Y. L. Hong, and S. Gwo, Appl. Phys. Lett. 95, 232104 (2009).
http://dx.doi.org/10.1063/1.3270042
15.
15. V. M. Polyakov, V. Cimalla, V. Lebedev, and F. Schwierz, Phys. Status Solidi A 207, 1353 (2010).
http://dx.doi.org/10.1002/pssa.200983539
16.
16. G. Koley, Z. Cai, E. B. Quddus, J. Liu, M. Qazi, and R. A. Webb, Nanotechnology 22, 295701 (2011).
http://dx.doi.org/10.1088/0957-4484/22/29/295701
17.
17. O. Kryliouk, H. J. Park, Y. S. Won, T. Anderson, A. Davydov, I. Levin, J. H. Kim, and J. A. Freitas Jr., Nanotechnology 18, 135606 (2007).
http://dx.doi.org/10.1088/0957-4484/18/13/135606
18.
18. L. W. Yin, Y. Bando, D. Golberg, and M. S. Li, Adv. Mater. 16, 1833 (2004).
http://dx.doi.org/10.1002/adma.200306684
19.
19. M. S. Hu, G. M. Hsu, K. H. Chen, C. J. Yu, H. C. Hsu, L. C. Chen, J. S. Hwang, L. S. Hong, and Y. F. Chen, Appl. Phys. Lett. 90, 123109 (2007).
http://dx.doi.org/10.1063/1.2714291
20.
20. Z. Cai, S. Garzon, M. V. S. Chandrashekhar, R. A. Webb, and G. Koley, J. Electron. Mater. 37, 585 (2008).
http://dx.doi.org/10.1007/s11664-007-0353-8
21.
21. T. T. Kang, X. Liu, R. Q. Zhang, W. G. Hu, G. Cong, F. A. Zhao, and Q. Zhu, Appl. Phys. Lett. 89, 071113 (2006).
http://dx.doi.org/10.1063/1.2337875
22.
22. C. T. Huang, J. Song, C. M. Tsai, W. F. Lee, D. H. Lien, Z. Gao, Y. Hao, L. J. Chen, and Z. L. Wang, Adv. Mater. (2010).
23.
23. V. Schmidt, S. Senz, and U. Gösele, Nano Lett. 5, 931 (2005).
http://dx.doi.org/10.1021/nl050462g
24.
24. X. M. Cai, F. Ye, S. Y. Jing, D. P. Zhang, P. Fan, and E. Q. Xie, Appl. Surf. Sci. 255, 2153 (2008).
http://dx.doi.org/10.1016/j.apsusc.2008.07.051
25.
25. F. Glas, J. C. Harmand, and G. Patriarche, Phys. Rev. Lett. 99, 146101 (2007).
http://dx.doi.org/10.1103/PhysRevLett.99.146101
26.
26. S. N. Mohammad, Nano lett. 8, 1532 (2008).
http://dx.doi.org/10.1021/nl072974w
27.
27. P. Buffat and J. P. Borel, Phys. Rev. A 13, 2287 (1976).
http://dx.doi.org/10.1103/PhysRevA.13.2287
28.
28. E. I. Givargizov, J. Cryst. Growth 20, 217 (1973).
http://dx.doi.org/10.1016/0022-0248(73)90008-0
29.
29. T. Zywietz, J. Neugebauer, and M. Scheffler, Appl. Phys. Lett. 73, 487 (1998).
http://dx.doi.org/10.1063/1.121909
30.
30. H. T. Wang, and T. Wu, J. Mater. Chem. 21, 15095 (2011).
http://dx.doi.org/10.1039/c1jm12417j
31.
31. B. A. Korgel, Science 309, 1683 (2005).
http://dx.doi.org/10.1126/science.1118125
32.
32. X. Y. Kong, and Z. L. Wang, Nano Lett. 3, 1625 (2003).
http://dx.doi.org/10.1021/nl034463p
33.
33. C. Y. Nam, D. Tham, and J. E. Fischer, Appl. Phys. Lett. 85, 5676 (2004).
http://dx.doi.org/10.1063/1.1829780
http://aip.metastore.ingenta.com/content/aip/journal/adva/2/2/10.1063/1.4729916
Loading
/content/aip/journal/adva/2/2/10.1063/1.4729916
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/2/2/10.1063/1.4729916
2012-06-12
2014-10-25

Abstract

Au-assisted growth of InN nanowires (NWs) was accomplished by a simple chemical vapor deposition system. The as-prepared InN NWs exhibit two morphologies with different growth directions: periodic NWs (PNWs) and smooth NWs (SNWs) along <0001> and , respectively. The PNWs with crinoids morphology resulted when larger Au particles (∼40 nm in diameter) were used, while the SNWs with smooth sidewalls were obtained when smaller Au particles (∼10 nm in diameter) served as the collector. Furthermore, the mechanism of this growth behavior was discussed in terms of the effect of catalyst nanoparticle size.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/2/2/1.4729916.html;jsessionid=1bid1l21du03e.x-aip-live-02?itemId=/content/aip/journal/adva/2/2/10.1063/1.4729916&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Effect of catalyst nanoparticle size on growth direction and morphology of InN nanowires
http://aip.metastore.ingenta.com/content/aip/journal/adva/2/2/10.1063/1.4729916
10.1063/1.4729916
SEARCH_EXPAND_ITEM