1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Effect of catalyst nanoparticle size on growth direction and morphology of InN nanowires
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/2/2/10.1063/1.4729916
1.
1. Alfredo M. Morales and Charles M. Lieber, Science 279, 208 (1998).
http://dx.doi.org/10.1126/science.279.5348.208
2.
2. Y. Li, F. Qian, J. Xiang, and C. M. Lieber, Materials Today 9, 18 (2006).
http://dx.doi.org/10.1016/S1369-7021(06)71650-9
3.
3. H. Liu, L. Shi, X. Geng, R. Su, G. Cheng, and S. Xie, Nanotechnology 21, 245601 (2010).
http://dx.doi.org/10.1088/0957-4484/21/24/245601
4.
4. Y. Cai, S. K. Chan, I. K. Sou, Y. F. Chan, D. S. Su, and N. Wang, Adv. Mater. 18, 109 (2006).
http://dx.doi.org/10.1002/adma.200500822
5.
5. M. C. Putnam, M. A. Filler, B. M. Kayes, M. D. Kelzenberg, Y. Guan, N. S. Lewis, J. M. Eiler, and H. A. Atwater, Nano Lett. 8, 3109 (2008).
http://dx.doi.org/10.1021/nl801234y
6.
6. H. Wang, Z. Xie, W. Yang, J. Fang, and L. An, Cryst. Growth Des. 8, 3893 (2008).
http://dx.doi.org/10.1021/cg8002756
7.
7. R. S. Wagner and W. C. Ellis, Appl. Phys. Lett. 4, 89 (1964).
http://dx.doi.org/10.1063/1.1753975
8.
8. B. A. Wacaser, K. A. Dick, J. Johansson, M. T. Borgström, K. Deppert, and L. Samuelson, Adv. Mater. 21, 153 (2009).
http://dx.doi.org/10.1002/adma.200800440
9.
9. H. Liu, S. Xie, and G. Cheng, CrystEngComm 13, 3649 (2011).
http://dx.doi.org/10.1039/c1ce05137g
10.
10. Xu Ji, Huajun Li, Zhiguo Wu, Shuang Cheng, Hairong Hu, De Yan, Renfu Zhuo, Jun Wang, and Pengxun Yan, CrystEngComm 13, 5198 (2011).
http://dx.doi.org/10.1039/c1ce05293d
11.
11. P. Ebert, S. Schaafhausen, A. Lenz, A. Sabitova, L. Ivanova, M. Dähne, Y. L. Hong, S. Gwo, and H. Eisele, Appl. Phys. Lett. 98, 062103 (2011).
http://dx.doi.org/10.1063/1.3553022
12.
12. L. Colakerol, T. D. Veal, H. K. Jeong, L. Plucinski, A. DeMasi, T. Learmonth, P. A. Glans, S. Wang, Y. Zhang, and L. F. J. Piper, Phys. Rev. Lett. 97, 237601 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.237601
13.
13. J. Chen, G. Cheng, E. Stern, M. A. Reed, and P. Avouris, Nano lett. 7, 2276 (2007).
http://dx.doi.org/10.1021/nl070852y
14.
14. H. Ahn, Y. J. Yeh, Y. L. Hong, and S. Gwo, Appl. Phys. Lett. 95, 232104 (2009).
http://dx.doi.org/10.1063/1.3270042
15.
15. V. M. Polyakov, V. Cimalla, V. Lebedev, and F. Schwierz, Phys. Status Solidi A 207, 1353 (2010).
http://dx.doi.org/10.1002/pssa.200983539
16.
16. G. Koley, Z. Cai, E. B. Quddus, J. Liu, M. Qazi, and R. A. Webb, Nanotechnology 22, 295701 (2011).
http://dx.doi.org/10.1088/0957-4484/22/29/295701
17.
17. O. Kryliouk, H. J. Park, Y. S. Won, T. Anderson, A. Davydov, I. Levin, J. H. Kim, and J. A. Freitas Jr., Nanotechnology 18, 135606 (2007).
http://dx.doi.org/10.1088/0957-4484/18/13/135606
18.
18. L. W. Yin, Y. Bando, D. Golberg, and M. S. Li, Adv. Mater. 16, 1833 (2004).
http://dx.doi.org/10.1002/adma.200306684
19.
19. M. S. Hu, G. M. Hsu, K. H. Chen, C. J. Yu, H. C. Hsu, L. C. Chen, J. S. Hwang, L. S. Hong, and Y. F. Chen, Appl. Phys. Lett. 90, 123109 (2007).
http://dx.doi.org/10.1063/1.2714291
20.
20. Z. Cai, S. Garzon, M. V. S. Chandrashekhar, R. A. Webb, and G. Koley, J. Electron. Mater. 37, 585 (2008).
http://dx.doi.org/10.1007/s11664-007-0353-8
21.
21. T. T. Kang, X. Liu, R. Q. Zhang, W. G. Hu, G. Cong, F. A. Zhao, and Q. Zhu, Appl. Phys. Lett. 89, 071113 (2006).
http://dx.doi.org/10.1063/1.2337875
22.
22. C. T. Huang, J. Song, C. M. Tsai, W. F. Lee, D. H. Lien, Z. Gao, Y. Hao, L. J. Chen, and Z. L. Wang, Adv. Mater. (2010).
23.
23. V. Schmidt, S. Senz, and U. Gösele, Nano Lett. 5, 931 (2005).
http://dx.doi.org/10.1021/nl050462g
24.
24. X. M. Cai, F. Ye, S. Y. Jing, D. P. Zhang, P. Fan, and E. Q. Xie, Appl. Surf. Sci. 255, 2153 (2008).
http://dx.doi.org/10.1016/j.apsusc.2008.07.051
25.
25. F. Glas, J. C. Harmand, and G. Patriarche, Phys. Rev. Lett. 99, 146101 (2007).
http://dx.doi.org/10.1103/PhysRevLett.99.146101
26.
26. S. N. Mohammad, Nano lett. 8, 1532 (2008).
http://dx.doi.org/10.1021/nl072974w
27.
27. P. Buffat and J. P. Borel, Phys. Rev. A 13, 2287 (1976).
http://dx.doi.org/10.1103/PhysRevA.13.2287
28.
28. E. I. Givargizov, J. Cryst. Growth 20, 217 (1973).
http://dx.doi.org/10.1016/0022-0248(73)90008-0
29.
29. T. Zywietz, J. Neugebauer, and M. Scheffler, Appl. Phys. Lett. 73, 487 (1998).
http://dx.doi.org/10.1063/1.121909
30.
30. H. T. Wang, and T. Wu, J. Mater. Chem. 21, 15095 (2011).
http://dx.doi.org/10.1039/c1jm12417j
31.
31. B. A. Korgel, Science 309, 1683 (2005).
http://dx.doi.org/10.1126/science.1118125
32.
32. X. Y. Kong, and Z. L. Wang, Nano Lett. 3, 1625 (2003).
http://dx.doi.org/10.1021/nl034463p
33.
33. C. Y. Nam, D. Tham, and J. E. Fischer, Appl. Phys. Lett. 85, 5676 (2004).
http://dx.doi.org/10.1063/1.1829780
http://aip.metastore.ingenta.com/content/aip/journal/adva/2/2/10.1063/1.4729916
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

XRD pattern of the sample.

Image of FIG. 2.

Click to view

FIG. 2.

(a) SEM image of as-prepared Au catalyst nanoparticles on the Si substrate; (b), (c) are low- and high-magnification SEM images of the product, respectively.

Image of FIG. 3.

Click to view

FIG. 3.

(a) Low-magnification TEM image of one SNW. (b) HRTEM image taken from the SNW. (c) and (d) fast Fourier transform (FFT) pattern and the simulated electron diffraction pattern of the SNW shown in (b). Comparison with simulation also reveals that electron beam projection is parallel to <0001> of wurtzite. EDS spectra of the tip (e) and body (f) acquired from the small red circles e and f, respectively, marked in (a).

Image of FIG. 4.

Click to view

FIG. 4.

TEM and EDS analysis of one PNW. (a) Low-magnification TEM image of the PNW; (b)-(d) HRTEM images taken from different segmental edges of the PNW as marked by red small pane in (a); EDS spectra of the tip (e) and body (f) of the PNW marked by small blue circles in (a); (g) Space-filling model of ideal <0001>-PNW; (h) Ball-and-stick model of InN wurtzite crystal structure, showing the side-wall of the ideal PNW consists of In-polar and N-poalr facets. It also reveals that electron beam projection is parallel to of wurtzite.

Image of FIG. 5.

Click to view

FIG. 5.

Diagram of linear relationship of the free energy per circumference and the nucleus radius of both <0001> and -oriented InN NWs. The inset are corresponding formulae and schematic geometry information of the NWs.

Loading

Article metrics loading...

/content/aip/journal/adva/2/2/10.1063/1.4729916
2012-06-12
2014-04-19

Abstract

Au-assisted growth of InN nanowires (NWs) was accomplished by a simple chemical vapor deposition system. The as-prepared InN NWs exhibit two morphologies with different growth directions: periodic NWs (PNWs) and smooth NWs (SNWs) along <0001> and , respectively. The PNWs with crinoids morphology resulted when larger Au particles (∼40 nm in diameter) were used, while the SNWs with smooth sidewalls were obtained when smaller Au particles (∼10 nm in diameter) served as the collector. Furthermore, the mechanism of this growth behavior was discussed in terms of the effect of catalyst nanoparticle size.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/2/2/1.4729916.html;jsessionid=vi6hylcggtin.x-aip-live-03?itemId=/content/aip/journal/adva/2/2/10.1063/1.4729916&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Effect of catalyst nanoparticle size on growth direction and morphology of InN nanowires
http://aip.metastore.ingenta.com/content/aip/journal/adva/2/2/10.1063/1.4729916
10.1063/1.4729916
SEARCH_EXPAND_ITEM