1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Designing of epoxy composites reinforced with carbon nanotubes grown carbon fiber fabric for improved electromagnetic interference shielding
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/2/2/10.1063/1.4730043
1.
1. N. Li, Y. Huang, F. Du, X. B. He, X. Lin, H. J. Gao, Y. F. Ma, F. F. Li, Y. S. Chen, and P. C. Eklund, Nano Lett. 6(6), 1141 (2006).
http://dx.doi.org/10.1021/nl0602589
2.
2. H. Xu, S. M. Anlage, L. B. Hu, and G. Gruner, Appl. Phys. Lett. 90(18), 183119 (2007).
http://dx.doi.org/10.1063/1.2734897
3.
3. R. K. Srivastava, T. N. Narayanan, A. P. Reena Mary, M. R. Anantharaman, A. Srivastava, R. Vajtai, and P. M. Ajayan, Appl. Phys. Lett. 99(11), 113116 (2011).
http://dx.doi.org/10.1063/1.3638462
4.
4. J. H. Du, J. Bai and H. M. Cheng, eXPRESS Polym. Lett. 1, 253 (2007).
http://dx.doi.org/10.3144/expresspolymlett.2007.39
5.
5. K. T. Lau and D. Hui, Compos. Part B 33(4), 263 (2002).
http://dx.doi.org/10.1016/S1359-8368(02)00012-4
6.
6. H. Qian, E. S. Greenhalgh, M. S. P. Shaffer and A. Bismarck, J. Mater. Chem. 20(35), 4751 (2010).
http://dx.doi.org/10.1039/c000041h
7.
7. E. T. Thostenson, J. J. Gangloff, C. Li, and J. H. Byun, Appl. Phys. Lett. 95(7), 073111 (2009).
http://dx.doi.org/10.1063/1.3202788
8.
8. Y. A. Kim, S. Kamio, T. Tajiri, T. Hayashi, S. M. Song, M. Endo, M. Terrones and M. S. Dresselhaus, Appl. Phys. Lett. 90(9), 093125 (2007).
http://dx.doi.org/10.1063/1.2710778
9.
9. R. B. Mathur, S. Chatterjee and B. P. Singh, Compos. Sci. Technol. 68(7-8), 1608 (2008).
http://dx.doi.org/10.1016/j.compscitech.2008.02.020
10.
10. B. P. Singh, D. Singh, R. B. Mathur and T. L. Dhami, Nanoscale Res. Lett. 3(11), 444 (2008).
http://dx.doi.org/10.1007/s11671-008-9179-4
11.
11. H. M. Kim, K. Kim, C. Y. Lee, J. Joo, S. J. Cho, H. S. Yoon, D. A. Pejaković, J. W. Yoo, and A. J. Epstein, Appl. Phys. Lett. 84(4), 589 (2004).
http://dx.doi.org/10.1063/1.1641167
12.
12. P. Saini, V. Choudhary, B. P. Singh, R. B. Mathur and S. K. Dhawan, Mater. Chem. and Phys. 113(2-3), 919 (2009).
http://dx.doi.org/10.1016/j.matchemphys.2008.08.065
13.
13. B. P. Singh, Prabha, P. Saini, T. Gupta, P. Garg, G. Kumar, I. Pande, S. Pande, R. K. Seth, S. K. Dhawan, and R. B. Mathur, J. Nanopart. Res. 13(12), 7065 (2011).
http://dx.doi.org/10.1007/s11051-011-0619-1
14.
14. P. Saini, V. Choudhary, B. P. Singh, R. B. Mathur, and S. K. Dhawan, Synth. Met. 161(15-16), 1522 (2011).
http://dx.doi.org/10.1016/j.synthmet.2011.04.033
15.
15. N. C. Das, D. Khastgir, T. K. Chaki, and A. Chakraborty, Compos. Part A 3(10), 1069 (2000).
http://dx.doi.org/10.1016/S1359-835X(00)00064-6
16.
16. M. Rahaman, T. K. Chaki, and D. Khastir, J. Mater. Sci. 46(11), 3989 (2011).
http://dx.doi.org/10.1007/s10853-011-5326-x
17.
17. Y. L. Yang, M. C. Gupta, K. L. Dudley, and R. W. Lawrence, J. Nanosci. Nanotechnol. 5(6), 927 (2005).
http://dx.doi.org/10.1166/jnn.2005.115
18.
18. R. B. Mathur, S. Pande, B. P. Singh, and T. L. Dhami, Polym. Compos. 29(7), 717 (2008).
http://dx.doi.org/10.1002/pc.20449
19.
19. S. Pande, B. P. Singh, R. B. Mathur, T. L. Dhami, P. Saini, and S. K. Dhawan, Nanoscale Res. Lett. 4(4), 327 (2009).
http://dx.doi.org/10.1007/s11671-008-9246-x
20.
20. A. Gupta and V. Choudhary, J. Mater. Sci. 46(19), 6416 (2011).
http://dx.doi.org/10.1007/s10853-011-5591-8
21.
21. S. M. Yuen, C. C. M. Ma, C. Y. Chuang, K. C. Yu, Wu S. Y. , C. C. Yang, and M. H. Wei, Compos. Sci. and Technol. 68(3-4), 963 (2008).
http://dx.doi.org/10.1016/j.compscitech.2007.08.004
22.
22. M. H. Al-Saleh and U. Sundararaj, Carbon 47(7), 1738 (2009).
http://dx.doi.org/10.1016/j.carbon.2009.02.030
23.
23. M. Arjmand, M. Mahmoodi, G. A. Gelves, S. Park, and U. Sundararaj, Carbon 49(11), 3430 (2011).
http://dx.doi.org/10.1016/j.carbon.2011.04.039
24.
24. V. Eswaraiah, V. Sankaranarayanan, and S. Ramaprabhu, Nanoscale Res. Lett. 6(1), 137 (2011).
http://dx.doi.org/10.1186/1556-276X-6-137
25.
25. Y. Li, C. Chen, J. T. Li, S. Zhang, Y. Ni, S. Cai, and J. Huang, Nanoscale Res. Lett. 5(7), 1170 (2010).
http://dx.doi.org/10.1007/s11671-010-9621-2
26.
26. Y. Haung, N. Li, Y. Ma, F. Du, F. Li, X. He, X. Lin, H. Gao, and Y. Chen, Carbon 45(8), 1614 (2007).
http://dx.doi.org/10.1016/j.carbon.2007.04.016
27.
27. Z. Liu, G. Bai, Y. Haung, F. Ma, F. Du, F. Li, T. Guo, and Y. Chen, Carbon 45(4), 821 (2007).
http://dx.doi.org/10.1016/j.carbon.2006.11.020
28.
28. N. C. Das and S. Maiti, J. Mater. Sci. 43(6), 1920 (2008).
http://dx.doi.org/10.1007/s10853-008-2458-8
29.
29. S. H. Park, P. T. Theilmann, P. M. Asbeck, and P. R. Bandaru, IEEE Transactions on nanotechnology 9(4), 464 (2010).
http://dx.doi.org/10.1109/TNANO.2009.2032656
30.
30. D. T. Colbert, Plast. Addit. Compd. 5(1), 18 (2003).
31.
31. J. Koszkul, J. of Polym. Engg. 18(4), 249 (2011).
http://dx.doi.org/10.1515/POLYENG.1998.18.4.249
http://aip.metastore.ingenta.com/content/aip/journal/adva/2/2/10.1063/1.4730043
Loading

Figures

Image of FIG. 1.

Click to view

FIG. 1.

SEM image showing uniform growth of CNTs over the surface of the CF fabric preform. The inset shows masking of CF monofilament with CNTs.

Image of FIG. 2.

Click to view

FIG. 2.

Variation of ILSS of multiscale composite with MWCNT loading. The inset figure a & b shows the SEM images of fracture surface of cfc and msc-4 respectively.

Image of FIG. 3.

Click to view

FIG. 3.

Variation in the electrical conductivities of the CF-MWCNT/epoxy composites with increasing MWCNT contents in the preforms. The inset figure shows the VSM of the scraped MWCNTs from the CF fabric.

Image of FIG. 4.

Click to view

FIG. 4.

(a) Total EMI shielding effectiveness (b) Reflection loss (c) Absorption loss of different composites as a function of frequency measured in the 8.2–12.4 GHz range (d) Variation in skin depth with the growth of MWCNTs on CF fabric and inset figure showing the variation of skin depth of msc-4 sample with the frequency.

Tables

Generic image for table

Click to view

Table I.

Data on the EMI-SE of carbon based polymer composites in X-band reported by different authors.

Loading

Article metrics loading...

/content/aip/journal/adva/2/2/10.1063/1.4730043
2012-06-13
2014-04-25

Abstract

In this letter, we report preparation of strongly anchored multiwall carbon nanotubes (MWCNTs) carbon fiber (CF) fabric preforms. These preforms were reinforced in epoxy resin to make multi scale composites for microwave absorption in the X-band (8.2-12.4GHz). The incorporation of MWCNTs on the carbon fabric produced a significant enhancement in the electromagnetic interference shielding effectiveness (EMI-SE) from −29.4 dB for CF/epoxy-composite to −51.1 dB for CF-MWCNT/epoxy multiscale composites of 2 mm thickness. In addition to enhanced EMI-SE, interlaminar shear strength improved from 23 MPa for CF/epoxy-composites to 50 MPa for multiscale composites indicating their usefulness for making structurally strong microwave shields.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/2/2/1.4730043.html;jsessionid=f1oc122960h6b.x-aip-live-02?itemId=/content/aip/journal/adva/2/2/10.1063/1.4730043&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Designing of epoxy composites reinforced with carbon nanotubes grown carbon fiber fabric for improved electromagnetic interference shielding
http://aip.metastore.ingenta.com/content/aip/journal/adva/2/2/10.1063/1.4730043
10.1063/1.4730043
SEARCH_EXPAND_ITEM