Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/2/2/10.1063/1.4730405
1.
1. Y.-W. Jun, J.-W. Seo, and J. Cheon, Acc. Chem. Res. 41, 179 (2008).
http://dx.doi.org/10.1021/ar700121f
2.
2. L. R. Bickford, Phys. Rev. 78, 449 (1950).
http://dx.doi.org/10.1103/PhysRev.78.449
3.
3. Q. A. Pankhurst, J. Connolly, S. K. Jones, and J. Dobson, J. Phys. D: Appl. Phys. 36, R167 (2003).
http://dx.doi.org/10.1088/0022-3727/36/13/201
4.
4. G. V. Kurlyandskaya, S. M. Bhagat, S. E. Jacobo, J. C. Aphesteguy, and N. N. Schegoleva, J. Phys. Chem. Sol. 72, 276 (2011).
http://dx.doi.org/10.1016/j.jpcs.2011.01.002
5.
5. M. Jeun, S. Lee, J. K. Kang, A. T. Tomitaka, K. W. Kang, Y. I. Kim, Y. Takemura, K.-W. Chung, J. Kwak, and S. Bae, Appl. Phys. Lett. 100, 092406 (2012).
http://dx.doi.org/10.1063/1.3689751
6.
6. S. Guo, D. Li, L. Zhang, J. Li, and E. Wang, Biomaterials 30, 1881 (2009).
http://dx.doi.org/10.1016/j.biomaterials.2008.12.042
7.
7. R. Hao, R. Xing, Z. Xu, Y. Hou, S. Gao, and S. Sun, Adv. Mater. 22, 2729 (2010).
http://dx.doi.org/10.1002/adma.201000260
8.
8. A. G. Roca, D. Carmona, N. Miguel-Sancho, O. Bomati-Miguel, F. Balas, C. Piquer, and J. Santamaría, Nanotechnology 23, 155603 (2012).
http://dx.doi.org/10.1088/0957-4484/23/15/155603
9.
9. J. Llandro, J. J. Palfreyman, A. Ionescu, and C. H. W. Barnes, Med. Biol. Eng. Comput. 48, 977 (2010).
http://dx.doi.org/10.1007/s11517-010-0649-3
10.
10. J. T. Mayo, C. Yavuz, S. Yean, L. Cong, H. Shipley, W. Yu, J. Falkner, A. Kan, M. Tomson, and V. L. Colvin, Sci. Technol. Adv. Mater. 8, 71 (2007).
http://dx.doi.org/10.1016/j.stam.2006.10.005
11.
11. R. Fan, X. H. Chen, and Z. Gui, Mater. Res. Bull. 36, 497 (2001).
http://dx.doi.org/10.1016/S0025-5408(01)00527-X
12.
12. D. E. Zhang, Z. W. Tong, S. Z. Li, X. B. Zhang, and A. L. Ying, Mater Lett 62, 4053 (2008).
http://dx.doi.org/10.1016/j.matlet.2008.05.023
13.
13. A. G. Roca, R. Costo, A. F. Rebolledo, S. Veintemillas-Verdaguer, P. Tartaj, T. Gonzalez-Carreno, M. P. Morales, and C. J. Serna, J. Phys. D: Appl. Phys. 42, 224002 (2009).
http://dx.doi.org/10.1088/0022-3727/42/22/224002
14.
14. S. Sun, H. Zeng, D. B. Robinson, S. Raoux, M. Rice, S. X. Wang, and G. Li, J. Am. Chem. Soc. 126, 273 (2004).
http://dx.doi.org/10.1021/ja0380852
15.
15. A. Kumar, S. Mohapatra, V. Fal-Miyar, A. Cerdeira A, J. A. García, H. Srikanth, J. Gass, and G. V. Kurlyandskaya, Appl. Phys. Lett. 91, 143902 (2007).
http://dx.doi.org/10.1063/1.2790370
16.
16. G. V. Kurlyandskaya, J. Cunanan, S. M. Bhagat, J. C. Aphesteguy, and S. E. Jacobo, J. Phys. Chem. Sol. 68, 1527 (2007).
http://dx.doi.org/10.1016/j.jpcs.2007.03.031
17.
17. L. Néel, Ann. Geophys. 5, 99 (1949).
18.
18. W. F. Brown Jr., Phys. Rev. 130, 1677 (1963).
http://dx.doi.org/10.1103/PhysRev.130.1677
19.
19. V. A. Ignatchenko, I. S. Edelman, and D. A. Petrov, Phys. Rev. B 81 054419 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.054419
20.
20. D. G. Chen, X. G. Tang, J. B. Wu, W. Zhang, Q. X. Liu, and Y. P. Jiang, J. Magn. Magn. Mater. 323, 1717 (2011).
http://dx.doi.org/10.1016/j.jmmm.2011.02.002
21.
21. L. Q. Yu, L. J. Zheng, and J. X. Yang, Mater. Chem. Phys. 66, 6 (2000).
http://dx.doi.org/10.1016/S0254-0584(00)00236-4
22.
22. Y. B. Khollam, S. R. Dhage, and S. B. Potdar, Mater Lett 56, 571 (2002).
http://dx.doi.org/10.1016/S0167-577X(02)00554-2
23.
23. T. Matsunaga, K. Maruyama, T. Takeyama, and T. Katoh, Bios. Bioelectr. 22, 2315 (2007).
http://dx.doi.org/10.1016/j.bios.2006.12.022
24.
24. Yu. A. Kotov, J. Nanoparticle Res. 5, 539 (2003).
http://dx.doi.org/10.1023/B:NANO.0000006069.45073.0b
25.
25. G. V. Kurlyandskaya, S. M. Bhagat, A. P. Safronov, I. V. Beketov, and A. Larrañaga, AIP Advances 1, 042122 (2011).
http://dx.doi.org/10.1063/1.3657510
26.
26. Yu. A. Kotov, E. I. Azarkevich, I. V. Beketov, T. M. Demina, A. M. , Murzakaev, and O. M. , Samatov, Key Eng. Mater. 132-136, 173 (1997).
http://dx.doi.org/10.4028/www.scientific.net/KEM.132-136.173
27.
27. A. M. Murzakaev, V. L. Kuznetsov, O. M. Samatov, T. M. Demina, O. R. Timoshenkova, and A. K. Shtoltz, Inorganic materials 43, 633 (2007).
http://dx.doi.org/10.1134/S0020168507060143
28.
28. H. M. Rietveld, Appl. Crystallogr. 2, 65 (1969).
http://dx.doi.org/10.1107/S0021889869006558
29.
29. P. Scherrer, Nachr Ges Wiss Göttingen 26, 98 (1918).
30.
30. J. S. Ramachandran, S. M. Bhagat, and J. L. Peng, Solid State Commun. 96, 127 (1995).
http://dx.doi.org/10.1016/0038-1098(95)00413-0
31.
31. G. V. Kurlyandskaya, S. M. Bhagat, C. Luna, M. Vazquez, J. Appl. Phys. 99, 104308 (2006).
http://dx.doi.org/10.1063/1.2191740
32.
32. Y. Zhang, Y. Chen, P. Westerhoff, K. Hristovski, and J. C. Crittenden, Water Res. 42, 2204 (2008).
http://dx.doi.org/10.1016/j.watres.2007.11.036
33.
33. Y. Hwang, J.-K. Lee, Y.-M. Jeong, S. Cheong, Y.-Ch. Ahn, and S. H. Kim, Powder Technology 186, 145 (2008).
http://dx.doi.org/10.1016/j.powtec.2007.11.020
34.
34. S. J. Chung, J. P. Leonard, I. Nettleship, J. K. Lee, Y. Soong, D. V. Martello, and M. K. Chyu, Powder Technology 194, 75 (2009).
http://dx.doi.org/10.1016/j.powtec.2009.03.025
35.
35. A. W. Pacek, P. Ding, and A. T. Utomo, Powder Technology 173, 203 (2007).
http://dx.doi.org/10.1016/j.powtec.2007.01.006
36.
36. P. C. Hidber, T. J. Graule, and, L. J. Gauckler, J. Am. Ceram. Soc. 79, 1857 (1996).
http://dx.doi.org/10.1111/j.1151-2916.1996.tb08006.x
37.
37. P. C. Hiemenz and R. Rajagopalan, Principles of Colloid and Surface Chemistry (Marcel Dekker, New York, 1997) p. 499.
38.
38. M. Kosmulski, Chemical properties of material surfaces (Marcel Dekker, New York, Basel, 2001) p. 248.
39.
39. W. W. Tscharnuter, in Encyclopedia of Analytical Chemistry, Ed. by R. A. Meyers (John Wiley & Sons Ltd., 2001) p. 5469.
40.
40. E. W. J. Verwey, Nature 144, 327 (1939)
http://dx.doi.org/10.1038/144327b0
41.
41. J. S. Salazar, L. Perez, O. de Abril, L. T. Phuoc, D. Ihiawakrim, M. Vazquez, J.-M. Greneche, S. Begin-Colin, and G. Pourroy, Chem. Mater. 23, 1379 (2011).
42.
42. G. F. Goya, T. S. Berquó, F. C. Fonseca, and M. P. Morales, J. Appl. Phys. 94, 3520 (2003).
http://dx.doi.org/10.1063/1.1599959
43.
43. R. W. Chantrell and E. P. Wohlfarth, Phys. Stat. Sol. A 91, 619 (1985).
http://dx.doi.org/10.1002/pssa.2210910231
44.
44. E. P. Wohlfarth, Phys. Lett. A 70, 489 (1979).
http://dx.doi.org/10.1016/0375-9601(79)90375-X
45.
45. R. C. O´Handley, Modern Magnetic Materials (John Wiley & Sons, New York, USA, 1972) p. 740.
46.
46. S. Morup, C. Frandsen, and M. F. Hansen, Beilstein J. Nanotechnol. 1, 48 (2010).
http://dx.doi.org/10.3762/bjnano.1.6
47.
47. B. D. Cullity, Introduction to Magnetic Materials (Addison-Wesley, Reading, MA, USA, 1972) p 544.
48.
48. V. V. Srinivasu, S. E. Lofland, S. M. Bhagat, K. Ghosh, and S. D. Tyagi, J. Appl. Phys. 86, 1067 (1999).
http://dx.doi.org/10.1063/1.371146
49.
49. F. J. Owens, J. Phys. Chem. Solids 64, 2289 (2003).
http://dx.doi.org/10.1016/S0022-3697(03)00261-0
http://aip.metastore.ingenta.com/content/aip/journal/adva/2/2/10.1063/1.4730405
Loading
/content/aip/journal/adva/2/2/10.1063/1.4730405
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/2/2/10.1063/1.4730405
2012-06-14
2016-09-29

Abstract

Nanoparticles of iron oxides (MNPs) were prepared using the electric explosion of wire technique (EEW). The main focus was on the fabrication of de-aggregated spherical nanoparticles with a narrow size distribution. According to XRD the major crystalline phase was magnetite with an average diameter of MNPs, depending on the fraction. Further separation of air-dry EEW nanoparticles was performed in aqueous suspensions. In order to provide the stability of magnetitesuspension in water, we found the optimum concentration of the electrostatic stabilizer (sodium citrate and optimum pH level) based on zeta-potential measurements. The stable suspensions still contained a substantial fraction of aggregates which were disintegrated by the excessive ultrasound treatment. The separation of the large particles out of the suspension was performed by centrifuging. The structural features, magnetic properties and microwave absorption of MNPs and their aqueous solutions confirm that we were able to obtain an ensemble in which the magnetic contributions come from the spherical MNPs. The particle size distribution in fractionated samples was narrow and they showed a similar behaviour to that expected of the superparamagnetic ensemble. Maximum obtained concentration was as high as 5 % of magnetic material (by weight). Designed assembly of de-aggregated nanoparticles is an example of on-purpose developed magnetic nanofluid.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/2/2/1.4730405.html;jsessionid=wCNhL1XO1vHKVm1rQedWg6su.x-aip-live-06?itemId=/content/aip/journal/adva/2/2/10.1063/1.4730405&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/2/2/10.1063/1.4730405&pageURL=http://scitation.aip.org/content/aip/journal/adva/2/2/10.1063/1.4730405'
Right1,Right2,Right3,