Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/2/2/10.1063/1.4732136
1.
1. E. D. Miller, D. C. Nesting, and J. V. Badding, Chem. Mater. 9, 18 (1997).
http://dx.doi.org/10.1021/cm960288k
2.
2. T. Yagi, W. Utsumi, M. A. Yamakata, T. Kikegawa, and O. Shimomura, Phys. Rev. B 46, 6031 (1992).
http://dx.doi.org/10.1103/PhysRevB.46.6031
3.
3. W. Utsumi and T. Yagi, Science 252, 1542 (1991).
4.
4. J. R. Patterson, A. Kudryavtsev, and Y. K. Vohra, Appl. Phys. Lett. 81, 2073 (2002).
http://dx.doi.org/10.1063/1.1508169
5.
5. Z. Wang, Y. Zhao, K. Tait, X. Liao, D. Schiferl, C. Zha, R. T. Downs, J. Qian, Y. Zhu, and T. Shen, Proc. Natl. Acad. Sci.U.S.A. 101, 13699 (2004).
http://dx.doi.org/10.1073/pnas.0405877101
6.
6. W. L. Mao, H. K. Mao, P. J. Eng, T. P. Trainor, M. Newville, C. Kao, D. L. Heinz, J. Shu, Y. Meng, and R. J. Hemley, Science 302, 425 (2003).
http://dx.doi.org/10.1126/science.1089713
7.
7. H. K. Mao and R. J. Hemley, Nature (London) 351, 721 (1991).
http://dx.doi.org/10.1038/351721a0
8.
8. W. Utsumi, T. Okada, T. Taniguchi, K. Funakoshi, T. Kikegawa, N. Hamaya, and O. Shimomura, J. Phys.: Condens. Matter 16, S1017 (2004).
http://dx.doi.org/10.1088/0953-8984/16/14/011
9.
9. R. B. Aust and H. G. Drickamer, Science 140, 817 (1963).
http://dx.doi.org/10.1126/science.140.3568.817
10.
10. F. P. Bundy and J. S. Kasper, J. Chem. Phys. 46, 3437 (1967).
http://dx.doi.org/10.1063/1.1841236
11.
11. R. Clarke and C. Uher, Adv. Phys. 33, 469 (1984).
http://dx.doi.org/10.1080/00018738400101691
12.
12. F. P. Bundy, W. A. Bassett, M. S. Weathers, R. J. Hemley, H. K. Mao, and A. F. Goncharov, Carbon 34, 141 (1996).
http://dx.doi.org/10.1016/0008-6223(96)00170-4
13.
13. T. Irifune, A. Kurio, S. Sakamoto, T. Inoue, and H. Sumiya, Nature (London) 421, 599 (2003).
http://dx.doi.org/10.1038/421599b
14.
14. H. Sumiya and T. Irifune, J. Mater. Res. 22, 2345 (2007).
http://dx.doi.org/10.1557/jmr.2007.0295
15.
15. Q. Li, Y. Ma, A R. Oganov, H. Wang, H. Wang, Y. Xu, T. Cui, H-K , Mao, and G. Zou, Phys. Rev. Lett. 102, 175506 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.175506
16.
16. K. Umemoto, R. M. Wentzcovitch, S. Saito, and T. Miyake, Phys. Rev. Lett. 104, 125504 (2010).
http://dx.doi.org/10.1103/PhysRevLett.104.125504
17.
17. J.-T. Wang, C. Chen, and Y. Kawazoe, Phys. Rev. Lett. 106, 075501 (2011).
http://dx.doi.org/10.1103/PhysRevLett.106.075501
18.
18. H. Niu, X-Q. Chen, S. Wang, D. Li, W L. Mao, and Y. Li, Phys. Rev. Lett. 108, 135501 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.135501
19.
19. H. Niu, P. Wei, Y. Sun, X. Q. Chen, C. Franchini, D. Li, and Y. Li, Appl. Phys. Lett. 99, 031901 (2011).
http://dx.doi.org/10.1063/1.3610996
20.
20. Z. Zhao, B. Xu, X. F. Zhou, L. M. Wang, B. Wen, J. He, Z. Liu, H. T. Wang, and Y. Tian, Phys. Rev. Lett. 107, 215502 (2011).
http://dx.doi.org/10.1103/PhysRevLett.107.215502
21.
21. R. F. Zhang, Z. J. Lin, and S. Veprek, Phys. Rev. B 83, 155452 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.155452
22.
22. X. F. Zhou, G. R. Qian, X. Dong, L. Zhang, Y. Tian, and H. T. Wang, Phys. Rev. B 82, 134126 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.134126
23.
23. M. Amsler, J. A. Flores-Livas, L. Lehtovaara, F. Balima, S. A. Ghasemi, D. Machon, S. Pailhès, A. Willand, D. Caliste, S. Botti, A. S. Miguel, S. Goedecker, and M. A. L. Marques, Phys. Rev. Lett. 108, 065501 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.065501
24.
24. G. Kresse and J. Furthmuller, Phys. Rev. B 54, 11169 (1996).
http://dx.doi.org/10.1103/PhysRevB.54.11169
25.
25. P. E. Blöchl, Phys. Rev. B 50, 17953 (1994);
http://dx.doi.org/10.1103/PhysRevB.50.17953
25.G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).
http://dx.doi.org/10.1103/PhysRevB.59.1758
26.
26. B. B. Karki, L. Stixrude, S. J. Clark, M. C. Warren, G. J. Ackland, and J. Crain, Am. Mineral 82, 51 (1997).
27.
27. H. J. McSkimin and W. L. Bond, Phys. Rev. 105, 116 (1957).
http://dx.doi.org/10.1103/PhysRev.105.116
28.
28. X. Q. Chen, C. L. Liu, and R. Podloucky, Phys. Rev. B 77, 064103 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.064103
29.
29. J. S. Zhang, J. D. Bass, T. Taniguchi, A. F. Goncharov, Y. Y. Chang, and S. D. Jacobsen, J. Appl. Phys. 109, 063521 (2011).
http://dx.doi.org/10.1063/1.3561496
30.
30. P. Rodríguez-Hernández, M. González-Diaz, and A. Muñoz, Phys. Rev. B 51, 14705 (1995).
http://dx.doi.org/10.1103/PhysRevB.51.14705
31.
31. C. Jiang, S. G. Srinivasan, A. Caro, and S. A. Maloy, J. Appl. Phys. 103, 043502 (2008).
http://dx.doi.org/10.1063/1.2884529
32.
32. D. M. Teter, MRS Bull. 23, 22 (1998).
33.
33. D. Roundy, C. R. Krenn, M. L. Cohen, and J. W. Morris, Phys. Rev. Lett. 82, 2713 (1999).
http://dx.doi.org/10.1103/PhysRevLett.82.2713
34.
34. R. F. Zhang, S. Veprek, and A. S. Argon, Phys. Rev. B 77, 172103 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.172103
35.
35. Z. Li, F. Gao, and Z. Xu, Phys. Rev. B 85, 144115 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.144115
http://aip.metastore.ingenta.com/content/aip/journal/adva/2/2/10.1063/1.4732136
Loading
/content/aip/journal/adva/2/2/10.1063/1.4732136
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/2/2/10.1063/1.4732136
2012-06-25
2016-12-10

Abstract

Z-carbon is a candidate structure proposed recently for the cold-compressed phase of carbon. We have studied the mechanical properties of Z-carbon by performing the first-principles density functional calculations. The single-crystal elastic constants calculations show that Z-carbon is mechanically stable. The predicted bulk and shear moduli of Z-carbon are comparable to diamond and cubic BN, suggesting that Z-carbon can be a superhard material. We also obtained the ideal tensile and shear strengths for Z-carbon through deformation from the elastic regime to structural instability. The failure modes under tensile deformation were explored carefully based on the calculated charge density distribution and bonding evolution.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/2/2/1.4732136.html;jsessionid=YVBxGqIL5CJbzMTbts8W3Sp7.x-aip-live-03?itemId=/content/aip/journal/adva/2/2/10.1063/1.4732136&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/2/2/10.1063/1.4732136&pageURL=http://scitation.aip.org/content/aip/journal/adva/2/2/10.1063/1.4732136'
Right1,Right2,Right3,