Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/2/2/10.1063/1.4732145
1.
1. C. J. Pickard and R. J. Needs, Nature Phys. 3, 473 (2007).
http://dx.doi.org/10.1038/nphys625
2.
2. K. A. Johnson and N. W. Ashcroft, Nature 403, 632 (2000).
http://dx.doi.org/10.1038/35001024
3.
3. A. Grinenko, D. O. Gericke, S. H. Glenzer, and J. Vorberger, Phys. Rev. Lett. 101, 194801 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.194801
4.
4. E. Wigner and H. B. Huntington, J. Chem. Phys. 3, 764 (1935).
http://dx.doi.org/10.1063/1.1749590
5.
5. N. W. Ashcroft, Phys. Rev. Lett. 21, 1748 (1968).
http://dx.doi.org/10.1103/PhysRevLett.21.1748
6.
6. P. Cudazzo, G. Profeta, A. Sanna, A. Floris, A. Continenza, S. Massidda, and E. K. U. Gross, Phys. Rev. Lett. 100, 257001 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.257001
7.
7. C. Narayana, H. Luo, J. Orloff, and A. L. Ruoff, Nature 393, 46 (1998).
http://dx.doi.org/10.1038/29949
8.
8. I. I. Mazin, R. Hemley, A. Goncharov, M. Hanfland, and H. K. Mao, Phys. Rev. Lett. 78, 1066 (1997).
http://dx.doi.org/10.1103/PhysRevLett.78.1066
9.
9. N. H. Chen, E. Sterer, and I. F. Silvera, Phys. Rev. Lett. 76, 1663 (1996).
http://dx.doi.org/10.1103/PhysRevLett.76.1663
10.
10. S. J. Weir, A. C. Mitchell, and W. J. Nellis, Phys. Rev. Lett. 76, 1860 (1996).
http://dx.doi.org/10.1103/PhysRevLett.76.1860
11.
11. G. W. Collins, L. B. Da Silva, P. Celliers, D. M. Gold, M. E. Foord, R. J. Wallace, A. Ng, S. V. Weber, K. S. Budil, and R. Cauble, Science 281, 1178 (1998).
http://dx.doi.org/10.1126/science.281.5380.1178
12.
12. P. Loubeyre, F. Occelli, and R. LeToullec, Nature 416, 613 (2002).
http://dx.doi.org/10.1038/416613a
13.
13. E. Gregoryanz, A. F. Goncharov, K. Matsuishi, H-K. Mao, and R. J. Hemley, Phys. Rev. Lett. 90, 175701 (2003).
http://dx.doi.org/10.1103/PhysRevLett.90.175701
14.
14. I. Goncharenko and P. Loubeyre, Nature 435, 1206 (2005).
http://dx.doi.org/10.1038/nature03699
15.
15. N. Subramanian, A. F. Goncharov, M. Somayazulu, and R. J. Hemley, J. Phys. : Confer. Series 215, 012057 (2010).
http://dx.doi.org/10.1088/1742-6596/215/1/012057
16.
16. S. A. Bonev, E. Schwegler, T. Ogitsu, and G. Galli, Nature 431, 669 (2004).
http://dx.doi.org/10.1038/nature02968
17.
17. S. Scandolo, Proc Natl Acad Sci. USA 100, 3051 (2003).
http://dx.doi.org/10.1073/pnas.0038012100
18.
18. K. T. Delaney, C. Pierleoni, and D. M. Ceperley, Phys. Rev. Lett. 97, 235702 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.235702
19.
19. E. Babaev, A. Sudbø, and N. W. Ashcroft, Nature 431, 666 (2004).
http://dx.doi.org/10.1038/nature02910
20.
20. I. Tamblyn and S. A. Bonev, 22nd International Symposium on High Performance Computing System and Applications (HPCS 2008, June 9-11 2008 Quebec City, Canada) pp 154160.
21.
21. J. M. McMahon and D. M. Ceperley, Phys. Rev. Lett. 106, 165302 (2011).
http://dx.doi.org/10.1103/PhysRevLett.106.165302
22.
22. V. Labet, P. Gonzalez-Morelos, R. Hoffmann, and N. W. Ashcroft, J. Chem. Phys. 136, 074501 (2012);
http://dx.doi.org/10.1063/1.3679662
22.V. Labet, R. Hoffmann, and N. W. Ashcroft, J. Chem. Phys. 074502 (2012);
http://dx.doi.org/10.1063/1.3679736
22.V. Labet, R. Hoffmann, and N. W. Ashcroft, J. Chem. Phys. 074503 (2012);
http://dx.doi.org/10.1063/1.3679749
22.V. Labet, R. Hoffmann, and N. W. Ashcroft, J. Chem. Phys. 074504 (2012).
http://dx.doi.org/10.1063/1.3679751
23.
23. N. W. Ashcroft, Phys. Rev. Lett. 92, 187002 (2004).
http://dx.doi.org/10.1103/PhysRevLett.92.187002
24.
24. J. Feng, W. Grochala, T. Jaroń, R. Hoffmann, A. Bergara, and N. W. Ashcroft, Phys. Rev. Lett. 96, 017006 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.017006
25.
25. M. I. Eremets, I. A. Trojan, S. A. Medvedev, J. S. Tse, and Y. Yao, Science 319, 1506 (2008).
http://dx.doi.org/10.1126/science.1153282
26.
26. C. J. Pickard and R. J. Needs, Phys. Rev. Lett. 97, 045504 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.045504
27.
27. X-J. Chen, J-L. Wang, V. V. Struzhkin, H-K. Mao, R. J. Hemley, and H.-Q. Lin, Phys. Rev. Lett. 101, 077002 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.077002
28.
28. X-J. Chen, V. V. Struzhkin, Y. Song, A. F. Goncharov, M. Ahart, Z. Liu, H-K. Mao, and R. J. Hemley, Proc. Natl. Acad. Sci. USA 105, 20 (2008).
http://dx.doi.org/10.1073/pnas.0710473105
29.
29. M. Martinez-Canales, A. R. Oganov, Y. Ma, Y. Yan, A. O. Lyakhov, and A. Bergara, Phys. Rev. Lett. 102, 087005 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.087005
30.
30. M. Martinez-Canalesa, A. Bergara, J. Feng, and W. Grochalad, J. Phys. and Chem. of Solids 67, 2095 (2006).
http://dx.doi.org/10.1016/j.jpcs.2006.05.050
31.
31. G. Gao, A. R. Oganov, A. Bergara, M. Martinez-Canales, T. Cui, T. Iitaka, Y. Ma, and G. Zou, Phys. Rev. Lett. 101, 107002 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.107002
32.
32. J. S. Tse, Y. Yao, and K. Tanaka, Phys. Rev. Lett. 98, 117004 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.117004
33.
33. G. Gao, A. R. Oganov, P. Li, Z. Li, H. Wang, T. Cui, Y. Ma, A. Bergarad, A. O. Lyakhov, T. Iitaka, and G. Zou, Proc. Natl. Acad. Sci. USA 107, 1317 (2010).
http://dx.doi.org/10.1073/pnas.0908342107
34.
34. L. Sun, A. L. Ruoff, C-S. Zha, and G. Stupian, J. Phys. and Chem. of Solids 67, 2603 (2006).
http://dx.doi.org/10.1016/j.jpcs.2006.08.003
35.
35. X. Jin, X. Meng, Z. He, Y. Ma, V. Liu, T. Cui, G. Zou, and H.-K. Mao, Proc. Natl. Acad. Sci. USA 107, 9969 (2010).
http://dx.doi.org/10.1073/pnas.1005242107
36.
36. D. Y. Kim, R. H. Scheicher, H-K. Mao, T. W. Kang, and R. Ahuja, Proc. Natl. Acad. Sci. USA 107, 2793 (2010).
http://dx.doi.org/10.1073/pnas.0914462107
37.
37. B. Stritzker, Z. Physik 268, 261 (1974).
http://dx.doi.org/10.1007/BF01669889
38.
38. V. E. Antonov, I. T. Belash, E. G. Ponyatovskii, and V. I. Rashupkin, JETP Lett. 31, 422 (1980).
39.
39. Y. Xia, M. Zhao, X. Liu, and Y. Ji, Advanced Materials Research 79–82, 67 (2009).
http://dx.doi.org/10.4028/www.scientific.net/AMR.79-82.67
40.
40. Y. Huang, and C. M. Lieber, Pure Appl. Chem. 76, 2051 (2004).
http://dx.doi.org/10.1351/pac200476122051
41.
41. J.-H. Han, G. L. C. Paulus, R. Maruyama, D. A. Heller, W.-J. Kim, P. W. Barone, C. Y. Lee, J. H. Choi, M-H. Ham, C. Song, C. Fantini and M. S. Strano, Nature Materials 9, 833 (2010).
http://dx.doi.org/10.1038/nmat2832
42.
42. Y. Ma, Y. Xia, M. Zhao, R. Wang, and L. Mei, Phys. Rev. B 63, 115422 (2001).
http://dx.doi.org/10.1103/PhysRevB.63.115422
43.
43. Y. Xia, M. Zhao, Y. Ma, X. Liu, M. Ying, and L. Mei, Phys. Rev. B 67, 115117 (2003).
http://dx.doi.org/10.1103/PhysRevB.67.115117
44.
44. D. Sánchez-Portal, P. Ordejón, E. Artacho, and J. M. Soler, Int. Quantum Chem. 65, 453 (1997).
http://dx.doi.org/10.1002/(SICI)1097-461X(1997)65:5<453::AID-QUA9>3.0.CO;2-V
45.
45. K. Komatsu, M. Murata, and Y. Murata, Science 307, 238 (2005).
http://dx.doi.org/10.1126/science.1106185
46.
46. N. Rajalakshmi, K. S. Dhathathreyan, A. Govindaraj, and B. C. Satishkumar, Electrochim. Acta 45, 4511 (2000).
http://dx.doi.org/10.1016/S0013-4686(00)00510-7
47.
47. H. Yamaguchi and Y. N. Nejoh, Trans. on Electrical and Electronic Engin., IEEJ Trans. 3, 596 (2008).
http://dx.doi.org/10.1002/tee.20319
48.
48. C. Niedermayer, I. D. Reid, E. Roduner, E. J. Ansaldo, C. Bernhard, U. Binninger, H. Glückler, E. Recknagel, J. I. Budnick, and A. Weidinger, Phys. Rev. B 47, 10923 (1993).
http://dx.doi.org/10.1103/PhysRevB.47.10923
49.
49. Y. X. Ren, T. Y. Ng, and K. M. Liew, Carbon 44, 397 (2006).
http://dx.doi.org/10.1016/j.carbon.2005.09.009
50.
50. Y. Ma, Y. Xia, M. Zhao, M. Ying, X. Liu, and P. Liu, J. Chem. Phys. 115, 8152 (2001).
http://dx.doi.org/10.1063/1.1409541
51.
51. Y. Xia, M. Zhao, F. Li, B. Huang, Z. Tan, X. Liu, Y. Ji, and L. Mei, J. Phys. Chem. B 108, 4711 (2004).
http://dx.doi.org/10.1021/jp049370q
52.
52. H. Chacham and S. G. Louie, Phys. Rev. Lett. 66, 64 (1991).
http://dx.doi.org/10.1103/PhysRevLett.66.64
53.
53. M. Städele and R. M. Martin, Phys. Rev. Lett. 84, 6070 (2000).
http://dx.doi.org/10.1103/PhysRevLett.84.6070
54.
54. K. A. Johnson and N. W. Ashcroft, Phys. Rev. B 58, 15548 (1998).
http://dx.doi.org/10.1103/PhysRevB.58.15548
55.
55. L. Hedin, Phys. Rev. 139, A796 (1965).
http://dx.doi.org/10.1103/PhysRev.139.A796
56.
56. R. J. Hemley, H. K. Mao, L. W. Finger, A. P. Jephcoat, R. M. Hazen, and C. S. Zha, Phys. Rev. B 42, 6458 (1990).
http://dx.doi.org/10.1103/PhysRevB.42.6458
57.
57. J. van Straaten and I. F. Silvera, Phys. Rev. B 37, 1989 (1988).
http://dx.doi.org/10.1103/PhysRevB.37.1989
58.
58. P. Loubeyre, R. LeToullec, D. Hausermann, M. Hanfland, R. J. Hemley, H. K. Mao, and L. W. Finger, Nature 383, 702 (1996).
http://dx.doi.org/10.1038/383702a0
59.
59. W. J. Evans and I. F. Silvera, Phys. Rev. B 57, 14105 (1998).
http://dx.doi.org/10.1103/PhysRevB.57.14105
60.
60. F. Datchi, P. Loubeyre, and R. LeToullec, Phys. Rev. B 61, 6535 (2000).
http://dx.doi.org/10.1103/PhysRevB.61.6535
http://aip.metastore.ingenta.com/content/aip/journal/adva/2/2/10.1063/1.4732145
Loading
/content/aip/journal/adva/2/2/10.1063/1.4732145
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/2/2/10.1063/1.4732145
2012-06-25
2016-12-10

Abstract

Extensive ab initio molecular dynamics simulations indicate that hydrogen can be confined in single walled carbon nanotubes to form high density and high pressure H2 molecular lattice, which has peculiar shell and axial structures depending on the density or pressure. The band gap of the confined H2 lattice is sensitive to the pressure. Heating the system at 2000K, the H2 lattice is firstly melted to form H2 molecular liquid, and then some of the H2 molecules dissociate accompanied by drastic molecular and atomic reactions, which have essential effect on the electronic structure of the hydrogen system. The liquid hydrogen system at 2000K is found to be a particular mixed liquid, which consists of H2 molecules, H atoms, and H-H-H trimers. The dissociated H atoms and the trimers in the liquid contribute resonance electron states at the Fermi energy to change the material properties substantially. Rapidly cooling the system from 2000K to 0.01 K, the mixed liquid is frozen to form a mixed solid melt with a clear trend of band gap closure. It indicates that this solid melt may become a superconducting nanowire when it is further compressed.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/2/2/1.4732145.html;jsessionid=RGOzpoyZ61qvH49h2iLcVpNc.x-aip-live-02?itemId=/content/aip/journal/adva/2/2/10.1063/1.4732145&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/2/2/10.1063/1.4732145&pageURL=http://scitation.aip.org/content/aip/journal/adva/2/2/10.1063/1.4732145'
Right1,Right2,Right3,