1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
The electrocaloric effect around the orthorhombic- tetragonal first-order phase transition in BaTiO3
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/2/2/10.1063/1.4732146
1.
1. P. D. Thacher, J. Appl. Phys. 39, 1996 (1968).
http://dx.doi.org/10.1063/1.1656478
2.
2. W. N. Lawless, Phys. Rev. B 16, 433 (1977).
http://dx.doi.org/10.1103/PhysRevB.16.433
3.
3. B. A. Tuttle and D. A. Payne, Ferroelectrics 37, 603 (1981).
http://dx.doi.org/10.1080/00150198108223496
4.
4. J. Hagberg, A. Uusimäki, and H. Jantunen, Appl. Phys. Lett. 92, 132909 (2008).
http://dx.doi.org/10.1063/1.2905296
5.
5. D. Guyomar, G. Sebald, B. Guiffard and L. Seveyrat, J. Phys. D: Appl. Phys. 39, 4491 (2006).
http://dx.doi.org/10.1088/0022-3727/39/20/029
6.
6. S. Mischenko, Q. Zhang, J. F. Scott, R. W. Whatmore, and N. D. Mathur, Science 311, 1270 (2006).
http://dx.doi.org/10.1126/science.1123811
7.
7. A. S. Mischenko, Q. Zhang, R. W. Whatmore, J. F. Scott, and N. D. Mathur, Appl. Phys. Lett. 89, 242912 (2006).
http://dx.doi.org/10.1063/1.2405889
8.
8. B. Neese, B. Chu, S. G. Lu, Y. Wang, E. Furman, and Q. M. Zhang, Science 321, 821 (2008).
http://dx.doi.org/10.1126/science.1159655
9.
9. B. Neese, S. G. Lu, B. Chu, and Q. Zhang, Appl. Phys. Lett. 94, 042910 (2009).
http://dx.doi.org/10.1063/1.3077189
10.
10. H. Chen, T. Ren, X. Wu, Y. Yang, and L. Liu, Appl. Phys. Lett. 94, 182902 (2009).
http://dx.doi.org/10.1063/1.3123817
11.
11. S. G. Lu, B. Rožič, Q. M. Zhang, Z. Kutnjak, R. Pirc, Minren Lin, Xinyu Li, and Lee Gorny, Appl. Phys. Lett. 97, 202901 (2010).
http://dx.doi.org/10.1063/1.3514255
12.
12. T. M. Correia, S. Kar-Narayan, J. S. Young, J. F. Scott, N. D. Mathur, R. W. Whatmore, and Q. Zhang, J. Phys. D: Appl. Phys. 44, 165407 (2011).
http://dx.doi.org/10.1088/0022-3727/44/16/165407
13.
13. R. Chukka, J. Cheah, Z. Chen, P. Yang, S. Shannigrahi, J. Wang, and L. Chen, Appl. Phys. Lett. 98, 242902 (2011).
http://dx.doi.org/10.1063/1.3595344
14.
14. Y. Bai, G. P. Zheng, and S. Q. Shi, Appl. Phys. Lett. 96, 192902 (2010).
http://dx.doi.org/10.1063/1.3430045
15.
15. G. Akcay, S. P. Alpay, J. V. Mantese, and G. A. Rossetti, Appl. Phys. Lett. 90, 252909 (2007).
http://dx.doi.org/10.1063/1.2750546
16.
16. G. Akcay, S. P. Alpay, G. A. Rossetti, Jr., and J. F. Scott, J. Appl. Phys. 103, 024104 (2008).
http://dx.doi.org/10.1063/1.2831222
17.
17. J. H. Qiu and Q. Jian, Phys. Lett. A 372, 7191 (2008).
http://dx.doi.org/10.1016/j.physleta.2008.10.042
18.
18. X. Zhang, J. B. Wang, B. Li, X. L. Zhong, X. J. Lou, and Y. C. Zhou, J. Appl. Phys. 109, 126102 (2011).
http://dx.doi.org/10.1063/1.3596814
19.
19. M. Valant, L. J. Dunne, A. K. Axelsson, NeilMcN. Alford, G. Manos, J. Peräntie, J. Hagberg, H. Jantunen, and A. Dabkowski, Phys. Rev. B 81, 214110 (2010)
http://dx.doi.org/10.1103/PhysRevB.81.214110
20.
20. L. D. Landau and E. M. Lifshitz, Statistical Physics (Pergamon Press, Oxford, 1980).
21.
21. L. V. Ginsburg, A. P. Levanyuk, A. A. Sobyanin, Ferroeelctrics 73, 171 (1987).
http://dx.doi.org/10.1080/00150198708227916
http://aip.metastore.ingenta.com/content/aip/journal/adva/2/2/10.1063/1.4732146
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

The DSC curves of BaTiO3 single crystal during heating and cooling process in a temperature range of –10∼30°C. The inset illustrates the meaning of T 1 and T 0 .

Image of FIG. 2.

Click to view

FIG. 2.

The overall variation of heat flow for BaTiO3 ceramics after zero-field-cooling from 20°C to 10°C. ( E = 5 and 10kV/cm)

Image of FIG. 3.

Click to view

FIG. 3.

The overall variation of heat flow for BaTiO3 ceramics after field-heating under 5kV/cm from 0°C to 15°C.

Image of FIG. 4.

Click to view

FIG. 4.

The temperature dependence of ECE exothermic values in first cycle under different fields for BaTiO3 single crystal. The dash line indicates the latent heat value.

Image of FIG. 5.

Click to view

FIG. 5.

The temperature dependence of ECE endothermic values except for first cycle of BaTiO3 single crystal. The inset shows the DSC heat flow curve under 10kV/cm at 17°C.

Loading

Article metrics loading...

/content/aip/journal/adva/2/2/10.1063/1.4732146
2012-06-25
2014-04-24

Abstract

This paper demonstrates the electrocaloric effect (ECE) around BaTiO3's orthorhombic-tetragonal first-order phase transition. By manipulating a field-induced transition of a metastable phase in the thermal hysteresis zone, a huge exothermic or endothermic peak appears after first applying or removing electric fields because of the energy change of lattice structure. A large ECE of ΔT/E = 1.4K·m/MV, equaling to latent heat, is achieved under 10kV/cm at 10°C. The entropy change for polarization ordering alone induces an ECE two orders of magnitude lower under the same condition. It confirms the dominant factor to ECE of the energy flow due to the structural phase transition.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/2/2/1.4732146.html;jsessionid=8di338lnp9obg.x-aip-live-01?itemId=/content/aip/journal/adva/2/2/10.1063/1.4732146&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: The electrocaloric effect around the orthorhombic- tetragonal first-order phase transition in BaTiO3
http://aip.metastore.ingenta.com/content/aip/journal/adva/2/2/10.1063/1.4732146
10.1063/1.4732146
SEARCH_EXPAND_ITEM