1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Magnetic hysteresis of an artificial square ice studied by in-plane Bragg x-ray resonant magnetic scattering
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/2/2/10.1063/1.4732147
1.
1. T. Aign, P. Meyer, S. Lemerle, J. P. Jamet, J. Ferré, V. Mathet, C. Chappert, J. Gierak, C. Vieu, F. Rousseaux, H. Launois, and H. Bernas, Phys. Rev. Lett. 81, 5656 (1998).
http://dx.doi.org/10.1103/PhysRevLett.81.5656
2.
2. M. Tanaka, E. Saitoh, H. Miyajima, T. Yamaoka, and Y. Iye, Phys. Rev. B 73, 052411 (2006).
http://dx.doi.org/10.1103/PhysRevB.73.052411
3.
3. E. Mengotti, L. J. Heyderman, A. Bisig, A. Fraile Rodríguez, L. Le Guyader, F. Nolting, and H. B. Braun, J. Appl. Phys. 105, 113113 (2009).
http://dx.doi.org/10.1063/1.3133202
4.
4. R. F. Wang, C. Nisoli, R. S. Freitas, J. Li, W. McConville, B. J. Cooley, M. S. Lund, N. Samarth, C. Leighton, V. H. Crespi, and P. Schiffer, Nature (London) 439, 303 (2006).
http://dx.doi.org/10.1038/nature04447
5.
5. S. A. Daunheimer, O. Petrova, O. Tchernyshyov, and J. Cumings, Phys. Rev. Lett. 107, 167201 (2011).
http://dx.doi.org/10.1103/PhysRevLett.107.167201
6.
6. C. Nisoli, J. Li, X. Ke, D. Garand, P. Schiffer, and V. H. Crespi, Phys. Rev. Lett. 105, 047205 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.047205
7.
7. Z. Budrikis, P. Politi, and R. L. Stamps, Phys. Rev. Lett. 107, 217204 (2011).
http://dx.doi.org/10.1103/PhysRevLett.107.217204
8.
8. P. E. Lammert, X. Ke, J. Li, C. Nisoli, D. M. Garand, V. H. Crespi, and P. Schiffer, Nature Phys. 6, 786 (2010).
http://dx.doi.org/10.1038/nphys1728
9.
9. S. Ladak, D. Read, T. Tyliszczak, W. R. Branford, and L. F. Cohen, New J. Phys. 13, 023023 (2011).
http://dx.doi.org/10.1088/1367-2630/13/2/023023
10.
10. M. J. Harris, S. T. Bramwell, D. F. McMorrow, T. Zeiske, and K. W. Godfrey, Phys. Rev. Lett. 79, 2554 (1997).
http://dx.doi.org/10.1103/PhysRevLett.79.2554
11.
11. X. Ke, J. Li, C. Nisoli, P. E. Lammert, W. McConville, R. F. Wang, V. H. Crespi, and P. Schiffer, Phys. Rev. Lett. 101, 037205 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.037205
12.
12. Y. Qi, T. Brintlinger, and J. Cumings, Phys. Rev. B 77, 094418 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.094418
13.
13. J. Li, X. Ke, S. Zhang, D. Garand, C. Nisoli, P. Lammert, V. H. Crespi, and P. Schiffer, Phys. Rev. B 81, 092406 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.092406
14.
14. Z. Budrikis, P. Politi, and R. L. Stamps, Phys. Rev. Lett. 105, 017201 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.017201
15.
15. J. P. Morgan, A. Stein, S. Langridge, and C. H. Marrows, Nature Phys. 7, 75 (2011).
http://dx.doi.org/10.1038/nphys1853
16.
16. Z. Budrikis, K. L. Livesey, J. P. Morgan, J. Akerman, A. Stein, S. Langridge, C. H. Marrows, and R. L. Stamps, New J. Phys 14, 035014 (2012).
http://dx.doi.org/10.1088/1367-2630/14/3/035014
17.
17. A. Remhof, A. Schumann, A. Westphalen, H. Zabel, N. Mikuszeit, E. Y. Vedmedenko, T. Last, and U. Kunze, Phys. Rev. B 77, 134409 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.134409
18.
18. J. P. Morgan, A. Stein, S. Langridge, and C. H. Marrows, New J. Phys. 13, 105002 (2011).
http://dx.doi.org/10.1088/1367-2630/13/10/105002
19.
19. A. Schumann, B. Sothmann, P. Szary, and H. Zabel, Appl. Phys. Lett. 97, 022509 (2010).
http://dx.doi.org/10.1063/1.3463482
20.
20. E. Mengotti, L. J. Heyderman, A. Fraile Rodríguez, F. Nolting, R. V. Hügli, and H. B. Braun, Nature Phys. 7, 68 (2011).
http://dx.doi.org/10.1038/nphys1794
21.
21. S. Ladak, D. E. Read, G. K. Perkins, L. F. Cohen, and W. R. Branford, Nature Phys. 6, 359 (2010).
http://dx.doi.org/10.1038/nphys1628
22.
22. C. Phatak, A. K. Petford-Long, O. Heinonen, M. Tanase, and M. De Graef, Phys. Rev. B 83, 174431 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.174431
23.
23. K. K. Kohli, A. L. Balk, J. Li, S. Zhang, I. Gilbert, P. E. Lammert, V. H. Crespi, P. Schiffer, and N. Samarth, Phys. Rev. B 84, 180412R (2011).
http://dx.doi.org/10.1103/PhysRevB.84.180412
24.
24. A. Westphalen, M.-S. Lee, A. Remhof, and H. Zabel, Rev. Sci. Instrum. 78, 121301 (2007).
http://dx.doi.org/10.1063/1.2821148
25.
25. A. Westphalen, A. Schumann, A. Remhof, H. Zabel, M. Karolak, B. Baxevanis, E. Y. Vedmedenko, T. Last, U. Kunze, and T. Eimüller, Phys. Rev. B. 77, 174407 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.174407
26.
26. U. B. Arnalds, E. T. Papaioannou, T. P. A. Hase, H. Raanaei, G. Andersson, T. R. Charlton, S. Langridge, and B. Hjörvarsson, Phys. Rev. B 82, 144434 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.144434
27.
27. G. van der Laan, C. R. Physique 9, 570 (2008).
http://dx.doi.org/10.1016/j.crhy.2007.06.004
28.
28. C. Sánchez-Hanke, C.-C. Kao, and S. L. Hulbert, Nucl. Inst. and Meth. in Phys. Res. A 608, 351 (2009).
http://dx.doi.org/10.1016/j.nima.2009.07.018
29.
29. K. Temst, M. J. Van Bael, V. V. Moshchalkov, and Y. Bruynseraede, J. Appl. Phys. 87, 4216 (2000).
http://dx.doi.org/10.1063/1.373055
30.
30. C. Sánchez-Hanke, F. J. Castaño, Y. Hao, S. L. Hulbert, C. A. Ross, H. I. Smith, and C.-C. Kao, IEEE Trans. Magn. 39, 3450 (2003).
http://dx.doi.org/10.1109/TMAG.2003.816179
31.
31. W. G. Stirling, Nucl. Inst. and Meth. in Phys. Res. B 199, 295 (2003).
http://dx.doi.org/10.1016/S0168-583X(02)01589-6
32.
32. D. R. Lee, Y. S. Chu, Y. Choi, J. C. Lang, G. Srajer, S. K. Sinha, V. Metlushko, and B. Ilic, Appl. Phys. Lett. 82, 982 (2003).
http://dx.doi.org/10.1063/1.1543249
33.
33. C. Spezzani, M. Fabrizioli, P. Candeloro, E. Di Fabrizio, G. Panaccione, and M. Sacchi, Phys. Rev. B 69, 224412 (2004).
http://dx.doi.org/10.1103/PhysRevB.69.224412
34.
34. L.-A. Michez, C. H. Marrows, P. Steadman, B. J. Hickey, D. A. Arena, J. Dvorak, H.-L. Zhang, D. G. Bucknall, and S. Langridge, Appl. Phys. Lett. 86, 112502 (2005).
http://dx.doi.org/10.1063/1.1881790
35.
35. D. R. Lee, J. W. Freeland, Y. Choi, G. Srajer, V. Metlushko, and B. Ilic, Phys. Rev. B 76, 144425 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.144425
36.
36. C. J. Kinane, N. A. Porter, C. H. Marrows, B. J. Hickey, D. A. Arena, J. Dvorak, E. Sirotkin, F. Y. Ogrin, T. R. Charlton, and S. Langridge, J. Appl. Phys. 103, 07B513 (2008).
http://dx.doi.org/10.1063/1.2829394
37.
37. D. R. Lee, Y. Choi, J. W. Freeland, D. J. Keavney, G. Srajer, V. Metlushko, and B. Ilic, J. Appl. Phys. 103, 07C513 (2008).
http://dx.doi.org/10.1063/1.2835694
38.
38. H. A. Dürr, E. Dudzik, S. S. Dhesi, J. B. Goedkoop, G. van der Laan, M. Belakhovsky, C. Mocuta, A. Marty, and Y. Samson, Science 284, 2166 (1999).
http://dx.doi.org/10.1126/science.284.5423.2166
39.
39. E. Dudzik, S. S. Dhesi, H. A. Dürr, S. P. Collins, M. D. Roper, G. van der Laan, K. Chesnel, M. Belakhovsky, A. Marty, and Y. Samson, Phys. Rev. B 62, 5779 (2000).
http://dx.doi.org/10.1103/PhysRevB.62.5779
40.
40. K. Chesnel, M. Belakhovsky, S. Landis, J. C. Toussaint, S. P. Collins, G. van der Laan, E. Dudzik, and S. S. Dhesi, Phys. Rev. B 66, 024435 (2002).
http://dx.doi.org/10.1103/PhysRevB.66.024435
41.
41. C. J. Kinane, A. K. Suszka, C. H. Marrows, B. J. Hickey, D. A. Arena, J. Dvorak, T. R. Charlton, and S. Langridge, Appl. Phys. Lett. 89, 092507 (2006).
http://dx.doi.org/10.1063/1.2344935
42.
42. C. H. Marrows, P. Steadman, A. C. Hampson, L.-A. Michez, B. J. Hickey, N. D. Telling, D. A. Arena, J. Dvorak, and S. Langridge, Phys. Rev. B 72, 024421 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.024421
43.
43. J. W. Freeland, K. Bussmann, P. Lubitz, Y. U. Idzerda, and C.-C. Kao, Appl. Phys. Lett. 73, 2206 (1998).
http://dx.doi.org/10.1063/1.122424
44.
44. A. K. Suszka, C. J. Kinane, C. H. Marrows, B. J. Hickey, D. A. Arena, J. Dvorak, A. Lamperti, B. K. Tanner, and S. Langridge, Appl. Phys. Lett. 91, 132510 (2007).
http://dx.doi.org/10.1063/1.2790492
45.
45. M. M. Schwickert, G. Y. Guo, M. A. Tomaz, W. L. O’Brien, and G. R. Harp, Phys. Rev. B 58, R4289 (1998).
http://dx.doi.org/10.1103/PhysRevB.58.R4289
46.
46.X-ray Data Booklet,” Lawrence Berkeley National Laboratory, Berkeley (2009).
47.
47. J. W. Freeland, V. Chakarian, K. Bussmann, Y. U. Idzerda, H. Wende, and C.-C. Kao, J. Appl. Phys. 83, 6290 (1998).
http://dx.doi.org/10.1063/1.367544
48.
48. J. W. Freeland, K. Bussmann, Y. U. Idzerda, and C.-C. Kao, Phys. Rev. B 60, R9923 (1999).
http://dx.doi.org/10.1103/PhysRevB.60.R9923
49.
49. E. C. Stoner and E. P. Wohlfarth, Phil. Trans. R. Soc. Lond. A 240, 599 (1948).
http://dx.doi.org/10.1098/rsta.1948.0007
50.
50. A. Gibaud, J. Wang, M. Tolan, G. Vignaud, and S. K. Sinha, J. Phys. I France 6, 1085 (1996).
http://dx.doi.org/10.1051/jp1:1996117
51.
51. M. Tolan, D. Bahr, J. Süßenbach, W. Press, F. Brinkop, and J. P. Kotthaus, Physica B 198, 55 (1994).
http://dx.doi.org/10.1016/0921-4526(94)90125-2
52.
52. D. R. Lee, J. W. Freeland, G. Srajer, S. K. Sinha, V. Metlushko, and B. Ilic, “Extraction of domain-specific magnetization reversal for nanofabricated periodic arrays using soft x-ray resonant magnetic scattering,” (2003), arXiv:cond-mat/0309672v1 [cond-mat.mtrl-sci].
53.
53. D. R. Lee, J. W. Freeland, G. Srajer, V. Metlushko, and C.-Y. You, J. Appl. Phys. 95, 7016 (2004).
http://dx.doi.org/10.1063/1.1668611
54.
54. V. Kapaklis, U. B. Arnalds, A. Harman-Clarke, E. T. Papaioannou, M. Karimipour, P. Korelis, A. Taroni, P. C. W. Holdsworth, S. T. Bramwell, and B. Hjörvarsson, New J. Phys 14, 035009 (2012).
http://dx.doi.org/10.1088/1367-2630/14/3/035009
http://aip.metastore.ingenta.com/content/aip/journal/adva/2/2/10.1063/1.4732147
Loading
/content/aip/journal/adva/2/2/10.1063/1.4732147
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/2/2/10.1063/1.4732147
2012-06-25
2014-07-31

Abstract

We report X-ray resonant magnetic scattering studies of a Permalloy artificial square ice nanomagnet array, focussing on the field-driven evolution of the sum Σ and difference Δ signals of left and right handed circularly polarized synchrotron X-rays at different lateral positions in reciprocal space Q x . We used X-rays tuned to the Fe L3 resonance energy, with the scattering plane aligned along a principal symmetry axis of the array. Details of the specular Δ hysteresis curve are discussed, following the system magnetization from an initial demagnetized state. The periodic structure gives rise to distinct peaks at in-plane reciprocal Bragg positions, as shown by fitting Σ(Q x ) to a model based on a simple unit cell structure. Diffraction order-dependent hysteresis in Δ is observed, indicative of the reordering of magnetization on the system's two interpenetrating sublattices, which markedly deviates from an ideal Ising picture under strong applied fields.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/2/2/1.4732147.html;jsessionid=c7papa0u10i6.x-aip-live-02?itemId=/content/aip/journal/adva/2/2/10.1063/1.4732147&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Magnetic hysteresis of an artificial square ice studied by in-plane Bragg x-ray resonant magnetic scattering
http://aip.metastore.ingenta.com/content/aip/journal/adva/2/2/10.1063/1.4732147
10.1063/1.4732147
SEARCH_EXPAND_ITEM