Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/2/2/10.1063/1.4732312
1.
1. J. C. Slonczewski, J. Magn. Magn. Mater. 159, L1 (1996).
http://dx.doi.org/10.1016/0304-8853(96)00062-5
2.
2. L. Berger, Phys. Rev. B 54, 9353 (1996).
http://dx.doi.org/10.1103/PhysRevB.54.9353
3.
3. J. A. Katine, F. J. Albert, R. A. Buhrman, E. B. Myers, and D. C. Ralph, Phys. Rev. Lett. 84, 3149 (2000).
http://dx.doi.org/10.1103/PhysRevLett.84.3149
4.
4. Y. Huai, F. Albert, P. Nguyen, M. Pakala, and T. Valet, Appl. Phys. Lett. 84, 3118 (2004).
http://dx.doi.org/10.1063/1.1707228
5.
5. K. Obata and G. Tatara, Phys. Rev. B 77, 214429 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.214429
6.
6. S. G. Tan, M. B. A. Jalil, T. Fujita, and X.-J. Liu, Ann. Phys. 326, 207 (2011);
http://dx.doi.org/10.1016/j.aop.2010.11.014
6.S. G. Tan, M. B. A. Jalil, and X.-J. Liu, [arXiv:0705.3502v1].
7.
7. A. Manchon and S. Zhang, Phys. Rev. B 78, 212405 (2008).
http://dx.doi.org/10.1103/PhysRevB.78.212405
8.
8. I. Mihai Miron et al., Nat. Mater. 9, 230 (2010).
9.
9. U. H. Pi et al., Appl. Phys. Lett. 97, 162507 (2010).
http://dx.doi.org/10.1063/1.3502596
10.
10. J. B. Miller et al., Phys. Rev. Lett. 90, 076807 (2003).
http://dx.doi.org/10.1103/PhysRevLett.90.076807
11.
11. Y. Sato, T. Kita, S. Gozu, and S. Yamada, J. Appl. Phys. 89, 8017 (2001).
http://dx.doi.org/10.1063/1.1362356
12.
12. S. Giglberger et al., Phys. Rev. B 75, 035327 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.035327
13.
13. A. V. Larionov and L. E. Golub, Phys. Rev. B 78, 033302 (2008).
http://dx.doi.org/10.1103/PhysRevB.78.033302
14.
14. M. Akabori et al., Phys. Rev. B 77, 205320 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.205320
15.
15. S. LaShell, B. A. McDougall, and E. Jensen, Phys. Rev. Lett. 77, 3419 (1996).
http://dx.doi.org/10.1103/PhysRevLett.77.3419
16.
16. C. R. Ast et al., Phys. Rev. Lett. 98, 186807 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.186807
17.
17. H. Cercellier et al., Phys. Rev. B 73, 195413 (2006).
http://dx.doi.org/10.1103/PhysRevB.73.195413
18.
18. O. Krupin et al., Phys. Rev. B 71, 201403 (2005).
http://dx.doi.org/10.1103/PhysRevB.71.201403
19.
19. J. Premper, M. Trautmann, J. Henk, and P. Bruno, Phys. Rev. B 76, 073310 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.073310
20.
20. C. R. Ast et al., Phys. Rev. B 77, 081407 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.081407
21.
21. S. Abdelouahed and J. Henk, Phys. Rev. B 82, 193411 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.193411
22.
22. J. H. Dil et al., Phys. Rev. Lett. 101, 266802 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.266802
23.
23. V. Sih et al., Nat. Phys. 1, 31 (2005).
http://dx.doi.org/10.1038/nphys009
24.
24. K.-H. Kim, H. jun Kim, H. C. Koo, J. Chang, and S.-H. Han, Appl. Phys. Lett. 97, 012504 (2010).
http://dx.doi.org/10.1063/1.3462325
25.
25. L. Szunyogh, G. Zaránd, S. Gallego, M. C. Muñoz, and B. L. Györffy, Phys. Rev. Lett. 96, 067204 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.067204
26.
26. A. H. Castro Neto and F. Guinea, Phys. Rev. Lett. 103, 026804 (2009).
http://dx.doi.org/10.1103/PhysRevLett.103.026804
27.
27. A. Matos-Abiague, Phys. Rev. B 81, 165309 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.165309
28.
28. B. K. Nikolić, L. P. Zârbo, and S. Souma, Phys. Rev. B 73, 075303 (2006).
http://dx.doi.org/10.1103/PhysRevB.73.075303
29.
29. S. Salahuddin, D. Datta, and S. Datta, (2008), arXiv:0811.3472v1.
30.
30. K. Hattori, J. Phys. Soc. Jpn 78, 084703 (2009).
http://dx.doi.org/10.1143/JPSJ.78.084703
31.
31. S. Wakoh and J. Yamashita, J. Phys. Soc. Jpn. 28, 1151 (1970).
http://dx.doi.org/10.1143/JPSJ.28.1151
32.
32. C. M. Schneider et al., J. Electron. Spectrosc. Relat. Phenom. 51, 263 (1990).
http://dx.doi.org/10.1016/0368-2048(90)80157-6
33.
33. J.-J. Zhu, D.-X. Yao, S.-C. Zhang, and K. Chang, Phys. Rev. Lett. 106, 097201 (2011).
http://dx.doi.org/10.1103/PhysRevLett.106.097201
34.
34. Y. Jiang et al., Phys. Rev. Lett. 92, 167204 (2004).
http://dx.doi.org/10.1103/PhysRevLett.92.167204
35.
35. H. Sukegawa, S. Kasai, T. Furubayashi, S. Mitani, and K. Inomata, Appl. Phys. Lett. 96, 042508 (2010).
http://dx.doi.org/10.1063/1.3297879
36.
36. P. Brusheim and H. Q. Xu, Phys. Rev. B 74, 205307 (2006).
http://dx.doi.org/10.1103/PhysRevB.74.205307
http://aip.metastore.ingenta.com/content/aip/journal/adva/2/2/10.1063/1.4732312
Loading
/content/aip/journal/adva/2/2/10.1063/1.4732312
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/2/2/10.1063/1.4732312
2012-06-26
2016-09-29

Abstract

We study the spatial distribution of spin torque induced by a strong Rashba spin-orbit coupling (RSOC) in a ferromagnetic(FM) metal layer, using the Keldysh non-equilibrium Green's function method. In the presence of the s-d interaction between the non-equilibrium conduction electrons and the local magnetic moments, the RSOC effect induces a torque on the moments, which we term the Rashba spin torque. A correlation between the Rashba spin torque and the spatial spin current is presented in this work, clearly mapping the spatial distribution of Rashba spin torque in a nano-sized ferromagneticdevice. When local magnetism is turned on, the out-of-plane (S z ) Spin Hall effect (SHE) is disrupted, but rather unexpectedly an in-plane (S y ) SHE is detected. We also study the effect of Rashba strength (α R ) and splitting exchange (Δ) on the non-equilibrium Rashba spin torque averaged over the device. Rashba spin torque allows an efficient transfer of spin momentum such that a typical switching field of 20 mT can be attained with a low current density of less than 107A/cm2.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/2/2/1.4732312.html;jsessionid=QGVhtm_uNXhDCE3ZRx6fx7Ej.x-aip-live-03?itemId=/content/aip/journal/adva/2/2/10.1063/1.4732312&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/2/2/10.1063/1.4732312&pageURL=http://scitation.aip.org/content/aip/journal/adva/2/2/10.1063/1.4732312'
Right1,Right2,Right3,