1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
First principles investigation of structural, electronic, elastic and thermal properties of rare-earth-doped titanate Ln2TiO5
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/2/3/10.1063/1.4739276
1.
1. M. H. Wu, T. W. Lin, M. D. Huang, H. Y. Wang, and T. M. Pan, Sensors and Actuators B-Chemical 146, 342 (2010).
http://dx.doi.org/10.1016/j.snb.2010.02.035
2.
2. T. M. Pan and C. W. Lin, Journal of Physical Chemistry C 114, 17914 (2010).
http://dx.doi.org/10.1021/jp107733u
3.
3. T. M. Pan, M. D. Huang, W. Y. Lin, and M. H. Wu, Analytica Chimica Acta 669, 68 (2010).
http://dx.doi.org/10.1016/j.aca.2010.04.045
4.
4. T. M. Pan, F. H. Chen, and J. S. Jung, Journal of Applied Physics 108, 074501 (2010).
http://dx.doi.org/10.1063/1.3490179
5.
5. T. M. Pan, W. H. Shu, and J. L. Hong, Applied Physics Letters 90, 222906 (2007).
http://dx.doi.org/10.1063/1.2744486
6.
6. T. M. Pan, L. C. Yen, C. C. Huang, and W. C. Lin, Electrochemical and Solid State Letters 12, G27 (2009).
http://dx.doi.org/10.1149/1.3111768
7.
7. T. M. Pan, W. W. Yeh, and J. W. Chen, Applied Physics Letters 91, 062909 (2007).
http://dx.doi.org/10.1063/1.2768630
8.
8. K. V. Syamala, G. Panneerselvam, G. G. S. Subramanian, and M. P. Antony, Thermochimica Acta 475, 76 (2008).
http://dx.doi.org/10.1016/j.tca.2008.05.008
9.
9. W. E. Ray, Nuclear Engineering and Design 17, 377 (1971).
http://dx.doi.org/10.1016/0029-5493(71)90100-2
10.
10. H. E. Stevens, Nuclear Science and Engineering 4, 373 (1958).
11.
11. R. D. Aughterson, G. R. Lumpkin, K. L. Smith, G. J. Thorogood, and K. R. Whittle, Mater. Res. Soc. Symp. Proc. 1107, 365 (2008).
http://dx.doi.org/10.1557/PROC-1107-365
12.
12. G. Panneerselvam, R. V. Krishnan, M. P. Antony, K. Nagarajan, T. Vasudevan, and P. R. V. Rao, J. Nucl. Mater. 327, 220 (2004).
http://dx.doi.org/10.1016/j.jnucmat.2004.02.009
13.
13. G. R. Odette, M. J. Alinger, and B. D. Wirth, Ann. Rev. Mater. Res. 38, 471 (2008).
http://dx.doi.org/10.1146/annurev.matsci.38.060407.130315
14.
14. S. J. Zinkle, Fusion Eng. Des. 74, 31 (2005).
http://dx.doi.org/10.1016/j.fusengdes.2005.08.008
15.
15. A. Steckmeyer, M. Praud, B. Fournier, J. Malaplate, J. Garnier, J. L. Bechade, I. Tournie, A. Tancray, A. Bougault, and P. Bonnaillie, J. Nucl. Mater. 405, 95 (2010).
http://dx.doi.org/10.1016/j.jnucmat.2010.07.027
16.
16. T. Hayashi, P. M. Sarosi, J. H. Schneibel, and M. J. Mills, Acta Materialia 56, 1407 (2008).
http://dx.doi.org/10.1016/j.actamat.2007.11.038
17.
17. Y. Jiang, J. R. Smith, and G. R. Odette, Acta Materialia 58, 1536 (2010).
http://dx.doi.org/10.1016/j.actamat.2009.10.061
18.
18. G. Kresse and D. Joubert, Physical Review B 59, 1758 (1999).
http://dx.doi.org/10.1103/PhysRevB.59.1758
19.
19. J. P. Perdew and Y. Wang, Physical Review B 45, 13244 (1992).
http://dx.doi.org/10.1103/PhysRevB.45.13244
20.
20. M. Zinkevich, Progress in Materials Science 52, 597 (2007).
http://dx.doi.org/10.1016/j.pmatsci.2006.09.002
21.
21. G. Adachi and N. Imanaka, Chemical Reviews 98, 1479 (1998).
http://dx.doi.org/10.1021/cr940055h
22.
22. A. Preuss and R. Gruehn, J. Solid State Chem. 110, 363 (1994).
http://dx.doi.org/10.1006/jssc.1994.1181
23.
23. M. A. Petrova and R. G. Grebenshchikov, Glass Physics and Chemistry 34, 603 (2008).
http://dx.doi.org/10.1134/S1087659608050118
24.
24. Y. F. Shepelev and M. A. Petrova, Russian Journal of Inorganic Chemistry 51, 1636 (2006).
http://dx.doi.org/10.1134/S0036023606100196
25.
25. Y. F. Shepelev and M. A. Petrova, Inorganic Materials 44, 1354 (2008).
http://dx.doi.org/10.1134/S0020168508120170
26.
26. W. G. Mumme and A. D. Wadsley, Acta Crystallographica Section B-Structural Crystallography and Crystal Chemistry B 24, 1327 (1968).
http://dx.doi.org/10.1107/S0567740868004243
27.
27. F. X. Zhang, J. W. Wang, M. Lang, J. M. Zhang, and R. C. Ewing, J. Solid State Chem. 183, 2636 (2010).
http://dx.doi.org/10.1016/j.jssc.2010.09.014
28.
28. D. C. Wallace, Thermodynamics of Crystals (Wiley, New York, 1972).
29.
29. R. Hill, Proceedings of the Physical Society of London Section A 65, 349 (1952).
http://dx.doi.org/10.1088/0370-1298/65/5/307
30.
30. G. Simmons and H. Wang, Cambridge (MA): MIT Press (1971).
31.
31. S. F. Pugh, Philosophical Magazine 45, 823 (1954).
32.
32. S. I. Ranganathan and M. Ostoja-Starzewski, Physical Review Letters 101, 055504 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.055504
33.
33. K. B. Panda and K. S. R. Chandran, Acta Materialia 54, 1641 (2006).
http://dx.doi.org/10.1016/j.actamat.2005.12.003
34.
34. K. Trachenko, J. M. Pruneda, E. Artacho, and M. T. Dove, Physical Review B 71, 184104 (2005).
http://dx.doi.org/10.1103/PhysRevB.71.184104
35.
35. V. V. Nemoshkalenko, S. V. Borisenko, V. N. Uvarov, A. N. Yasesko, A. G. Vakhney, A. I. Senkevich, T. N. Bondarenko, and V. D. Borisenko, Physical Review B 63, 075106 (2001).
http://dx.doi.org/10.1103/PhysRevB.63.075106
36.
36. H. Y. Xiao, X. T. Zu, F. Gao, and W. J. Weber, Journal of Applied Physics 104, 073503 (2008).
http://dx.doi.org/10.1063/1.2986156
37.
37. A. D. Becke and K. E. Edgecombe, Journal of Chemical Physics 92, 5397 (1990).
http://dx.doi.org/10.1063/1.458517
http://aip.metastore.ingenta.com/content/aip/journal/adva/2/3/10.1063/1.4739276
Loading
/content/aip/journal/adva/2/3/10.1063/1.4739276
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/2/3/10.1063/1.4739276
2012-07-18
2014-08-20

Abstract

Systematic first-principles calculations based on density functional theory were performed on a wide range of Ln2TiO5 compositions (Ln = La, Ce, Pr, Nd, Sm, Gd, Tb, Dy and Y) in order to investigate their structural,elastic, electronic, and thermal properties. At low temperature, these compounds crystallize in orthorhombic structures with a Pnma symmetry, and the calculated equilibrium structural parameters agree well with experimental results. A complete set of elastic parameters including elastic constants, Hill's bulk moduli, Young's moduli, shear moduli and Poisson's ratio were calculated. All Ln2TiO5 are ductile in nature. Analysis of densities of states and charge densities and electron localization functions suggests that the oxide bonds are highly ionic with some degree of covalency in the Ti-O bonds.Thermal properties including the mean sound velocity, Debye temperature, and minimum thermal conductivity were obtained from the elastic constants.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/2/3/1.4739276.html;jsessionid=2eifkud7ebsmr.x-aip-live-03?itemId=/content/aip/journal/adva/2/3/10.1063/1.4739276&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: First principles investigation of structural, electronic, elastic and thermal properties of rare-earth-doped titanate Ln2TiO5
http://aip.metastore.ingenta.com/content/aip/journal/adva/2/3/10.1063/1.4739276
10.1063/1.4739276
SEARCH_EXPAND_ITEM