1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Observation of intermediate bands in Eu3+ doped YPO4 host: Li+ ion effect and blue to pink light emitter
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/2/3/10.1063/1.4739504
1.
1. J. Choi, T. K. Tseng, M. Davidson, and P. H. Holloway, J. Mater. Chem. 21, 3113 (2011).
http://dx.doi.org/10.1039/c0jm03275a
2.
2. M. N. Luwang, R. S. Ningthoujam, S. K. Srivastava, and R. K. Vatsa, J. Mater. Chem. 21, 5326 (2011).
http://dx.doi.org/10.1039/c0jm03470c
3.
3. A. K. Parchur, R. S. Ningthoujam, S. B. Rai, G. S. Okram, R. A. Singh, M. Tyagi, S. C. Gadkari, and R. K. Vatsa, Dalton Trans. 40, 7595 (2011).
http://dx.doi.org/10.1039/c1dt10878f
4.
4. Y. Y. Li, W. D. Cheng, H. Zhang, C. S. Lin, W. L. Zhang, L. Geng, G. L. Chai, Z. Z. Luo, and Z. Z. He, Dalton Trans. 40, 7357 (2011).
http://dx.doi.org/10.1039/c1dt10460h
5.
5. H. A. Hoppe, K. Kazmierczak, S. Kacprzak, I. Schellenberg, and R. Pottgen, Dalton Trans. 40, 9971 (2011).
http://dx.doi.org/10.1039/c1dt10043b
6.
6. A. A. Ansari, M. Alam, J. P. Labis, S. A. Alrokayan, G. Shafi, T. N. Hasan, N. A. Syed, and A. A. Alshatwi, J. Mater. Chem. 21, 19310 (2011).
http://dx.doi.org/10.1039/c1jm12871j
7.
7. J. C. Batista, P. C. de Sousa Filho, and O. A. Serra, Dalton Trans. 41, 6310 (2012).
http://dx.doi.org/10.1039/c2dt30380a
8.
8. W. Zheng, H. Zhu, R. Li, D. Tu, Y. Liu, W. Luo, and X. Chen, Phys. Chem. Chem. Phys. 14, 6974 (2012).
http://dx.doi.org/10.1039/c2cp24044k
9.
9. K. Binnemans, Chem. Rev. 109, 4283 (2009).
http://dx.doi.org/10.1021/cr8003983
10.
10. Z. Hou, Z. Cheng, G. Li, W. Wang, C. Peng, C. Li, P. Ma, D. Yang, X. Kang, and J. Lin, Nanoscale 3, 1568 (2011).
http://dx.doi.org/10.1039/c0nr00774a
11.
11. Y. Hirakawa, K. Nakamura, and T. Imasaka, Anal. Chem. 73, 5472 (2001).
http://dx.doi.org/10.1021/ac010162t
12.
12. R. S. Ningthoujam, Enhancement Of Luminescence By Rare Earth Ions Doping In Semiconductor Host, edited by S. B. Rai and Y. Dwivedi (Nova Science Publishers, Inc., Hauppauge, USA, 2012).
13.
13. A. K. Parchur and R. S. Ningthoujam, Dalton Trans. 40, 7590 (2011).
http://dx.doi.org/10.1039/c1dt10327j
14.
14. A. K. Parchur, A. I. Prasad, A. A. Ansari, S. B. Rai, and R. S. Ningthoujam, Dalton Trans. 2012, DOI:10.1039/C2DT31257C.
http://dx.doi.org/10.1039/C2DT31257C
15.
15. N. K. Sahu, R. S. Ningthoujam, and D. Bahadur, J. Appl. Phys. 112, 014306 (2012).
http://dx.doi.org/10.1063/1.4731644
16.
16. S. Kundu, A. Kar, and A. Patra, J. Lumin. 132, 1400 (2012).
http://dx.doi.org/10.1016/j.jlumin.2012.01.037
17.
17. S. A. Camacho, P. H. B. Aoki, C. J. L. Constantino, R. F. Aroca, and A. M. Pires, J. Alloys Comp. (2012), DOI:10.1016/j.jallcom.2012.06.103.
http://dx.doi.org/10.1016/j.jallcom.2012.06.103
18.
18. A. H. Krumpel, A. J. J. Bos, A. Bessière, E. van der Kolk, and P. Dorenbos, Phy. Rev. B 80, 085103 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.085103
19.
19. A.-S. Cho, G. K. Choi, J.-S. An, J-R. Kim, and K. S. Hong, Mater. Res. Bull. 44, 173 (2009).
http://dx.doi.org/10.1016/j.materresbull.2008.03.016
20.
20. L. Li and S. Zhang, J. Phys. Chem. B 110, 21438 (2006).
http://dx.doi.org/10.1021/jp0552224
21.
21. P. K. Chakrabarti, K. N. Chattopadhyay, S. Modak, and J. Mondal, Hyperf. Interact. 175, 131 (2007).
http://dx.doi.org/10.1007/s10751-008-9597-9
22.
22. O. K. Moune, M. D. Faucher, and N. Edelstein, J. Lumin. 96, 51 (2002).
http://dx.doi.org/10.1016/S0022-2313(01)00211-3
23.
23. L. Qiong, S. Yiguo, Y. Hongsheng, and H. Wei, J. Rare Earth. 26, 495 (2008).
http://dx.doi.org/10.1016/S1002-0721(08)60125-8
24.
24. M. N. Luwang, R. S. Ningthoujam, Jagannath, S. K. Srivastava, and R. K. Vatsa, J. Am. Chem. Soc. 132, 2759 (2010).
http://dx.doi.org/10.1021/ja909578s
25.
25. J. Huang, R. Gao, Z. Lu, D. Qian, W. Li, B. Huang, and X. He, Opt. Mater. 32, 857 (2010).
http://dx.doi.org/10.1016/j.optmat.2009.12.011
26.
26. H. Lai, H. Yang, C. Tao, and X. Yang, Phys. Stat. Sol. (a) 204, 1178 (2007).
http://dx.doi.org/10.1002/pssa.200623033
27.
27. K. S. Sohn, I. W. Zeon, H. Chang, S. K. Lee, and H. D. Park, Chem. Mater. 14, 2140 (2002).
http://dx.doi.org/10.1021/cm0109701
28.
28. Z. Huo, C. Chen, and Y. Li, Chem. Commun. 3522 (2006).
http://dx.doi.org/10.1039/b606531g
29.
29. L. Li, Y. Su, and G. Li, J. Mater. Chem. 20, 459 (2010).
http://dx.doi.org/10.1039/b917384f
30.
30. J. W. Stouwdam, G. A. Hebbink, J. Huskens, and F. C. J. M. van Veggel, Chem. Mater. 15, 4604 (2003).
http://dx.doi.org/10.1021/cm034495d
31.
31. H. Guo, F. Li, J. Li, and H. Zhang, J. Am. Ceram. Soc. 94, 1651 (2011).
http://dx.doi.org/10.1111/j.1551-2916.2011.04532.x
32.
32. S. Ray, A. Banerjee, and P. Pramanik, Mater. Res. Bull. 45, 870 (2010).
http://dx.doi.org/10.1016/j.materresbull.2010.02.020
33.
33. B. D. Cullity, Elements of X-ray Diffraction, second edition (Addision-Wesley, USA, 1959).
34.
34. W. Kemp, Organic Spectroscopy, second edition (Macmillan Education Ltd., Hampshire, 1975).
35.
35. G. M. Begun, G. W. Beall, L. A. Boatner, and W. J. Gregor, J. Raman Spectrosc. 11, 273 (1981).
http://dx.doi.org/10.1002/jrs.1250110411
36.
36. W. Di, X. Zhao, S. Lu, X. Wang, and H. Zhao, J. Solid State Chem. 180, 2478 (2007).
http://dx.doi.org/10.1016/j.jssc.2007.06.025
37.
37. K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds (Wiley, New York, 1986).
38.
38. Y. Y. Tay, S. Li, C. Q. Sun, and P. Chen, Appl. Phys. Lett. 88, 173118 (2006).
http://dx.doi.org/10.1063/1.2198821
39.
39. See supplementary material at http://dx.doi.org/10.1063/1.4739504 for parameters obtained after mono-exponential equation fitting to decay data, deconvolution of O(1s) peak, luminescence spectra of 3 and 7 at.% Li+ co-doped YPO4:5Eu, Behavior of electric and magnetic dipole transitions of Eu3+ under different Li+ ion co-doping at different excitation wavelengths and mono-exponential fitting to luminescence decay data. [Supplementary Material]
40.
40. B. R. Judd, Phys. Rev. 127, 750 (1962).
http://dx.doi.org/10.1103/PhysRev.127.750
41.
41. R. X. Yan, X. M. Sun, X. Wang, Q. Peng, and Y. D. Li, J. Chem. Eur. 11, 2183 (2005).
http://dx.doi.org/10.1002/chem.200400649
42.
42. R. S. Ningthoujam, V. Sudarsan, and S. K. Kulshreshtha, J. Lumin. 127, 747 (2007).
http://dx.doi.org/10.1016/j.jlumin.2007.05.004
43.
43. R. S. Ningthoujam, N. S. Gajbhiye, A. Ahmed, S. S. Umre, and S. J. Sharma, J. Nanosci. Nanotechn. 8, 3059 (2008).
http://dx.doi.org/10.1166/jnn.2008.152
44.
44. G. Phaomei, R. S. Ningthoujam, W. R. Singh, N. S. Singh, M. N. Luwang, R. Tewari, and R. K. Vatsa, Opt. Mater. 32, 616 (2010).
http://dx.doi.org/10.1016/j.optmat.2009.12.009
45.
45. P. Babu and C. K. Jayasankar, Physica B 279, 262 (2000).
http://dx.doi.org/10.1016/S0921-4526(99)00876-5
46.
46. G. S. R. Raju, E. Pavitra, Y. H. Ko, and J. S. Yu, J. Mater. Chem. 2012, DOI:10.1039/C2JM32049E.
http://dx.doi.org/10.1039/C2JM32049E
47.
47. A. K. Parchur, G. S. Okram, R. A. Singh, R. Tewari, L. Pradhan, R. K. Vatsa, and R. S. Ningthoujam, AIP. Conf. Proc. 1313, 391 (2010).
http://dx.doi.org/10.1063/1.3530556
http://aip.metastore.ingenta.com/content/aip/journal/adva/2/3/10.1063/1.4739504
Loading

Figures

Image of FIG. 1.

Click to view

FIG. 1.

Typical XRD pattern of 500 °C annealed sample of 10 at.% Li+ co-doped YPO4:5Eu.

Image of FIG. 2.

Click to view

FIG. 2.

FTIR spectra of as-prepared and 500 °C annealed samples of 5 at.% Li+ co-doped YPO4:5Eu.

Image of FIG. 3.

Click to view

FIG. 3.

(a) TEM and (b) HRTEM images of as-prepared sample and (c) HRTEM image of 500 °C annealed sample of 5 at.% Li+ co-doped YPO4:5Eu. (d) SAED pattern of (a).

Image of FIG. 4.

Click to view

FIG. 4.

XPS spectra of as-prepared samples of 0 and 10 at.% Li+ co-doped YPO4:5Eu. Peaks corresponding to the core binding energies of individual elements are shown in (a)-(e). Binding energy of Eu2+(4d 5/2 ) is missing whereas that of Eu3+(4d 5/2 ) is observed after the expansion (c).

Image of FIG. 5.

Click to view

FIG. 5.

Excitation spectra of Li+ (0, 3, 5, 7 and 10 at.%) co-doped YPO4:5Eu nanoparticles: (a) as-prepared and (b) 500 °C annealed samples (monitoring emission at 594 nm).

Image of FIG. 6.

Click to view

FIG. 6.

Luminescence spectra of YPO4:5Eu: as-prepared and 500 °C annealed samples at different excitation wavelengths, 375 nm filter is used for 240-350 nm excitations and no filter for 399 nm excitation.

Image of FIG. 7.

Click to view

FIG. 7.

Luminescence spectra of 5 at.% Li+ co-doped YPO4:5Eu: as-prepared and 500 °C annealed samples at different excitation wavelengths, 375 nm filter is used for 240-350 nm excitations and no filter for 399 nm excitation.

Image of FIG. 8.

Click to view

FIG. 8.

Luminescence spectra of 10 at.% Li+ co-doped YPO4:5Eu: as-prepared and 500 °C annealed samples at different excitation wavelengths, 375 nm filter is used for 240-350 nm excitations and no filter for 399 nm excitation.

Image of FIG. 9.

Click to view

FIG. 9.

Variation of (a) A 2 (intensity of electric dipole transition, 5D07F2), (b) w 2 (its FWHM, nm) and (c) A 21 (asymmetric ratio) for Li+ (0, 3, 5, 7 and 10 at.%) co-doped YPO4:5Eu: as-prepared and 500 °C annealed samples under 399 nm excitation.

Image of FIG. 10.

Click to view

FIG. 10.

Photographs of 5 at.% Li+ co-doped YPO4:5Eu: (a) as-prepared, (b) 500 °C annealed nanoparticles, (c) as-prepared nanoparticles re-dispersion in ethanol and (d) as-prepared nanoparticles re-dispersion in PVA thin film before and after 266 nm laser excitation. All photographs are recorded using Nikon Coolpix P500 digital camera.

Image of FIG. 11.

Click to view

FIG. 11.

Schematic diagram for energy transfer process among the Eu-O, intermediate bands and Eu3+ state in YPO4:5Eu.

Image of FIG. 12.

Click to view

FIG. 12.

UV-Visible absorption spectra of as-prepared and 500 °C annealed 5 at.% Li+ co-doped YPO4:5Eu nanoparticles.

Image of FIG. 13.

Click to view

FIG. 13.

Lifetime decay spectra of as-prepared and 500 °C annealed Li+ doped YPO4:5Eu nanoparticles of (a) Li+ = 0, (b) Li+ = 3 and (c) Li+ = 10 at.% under 464 nm laser excitation. Emission is monitored at 590 nm. (d) Bi-exponential fitting to luminescence decay data of 3 at.% Li+ doped 500 °C annealed sample and fitting parameters are shown in the figure itself. The y-axis in (a)-(c) are represented on log scale.

Tables

Generic image for table

Click to view

Table I.

Asymmetric ratio (A 21 ) values of as-prepared and 500 °C annealed samples of Li+ (0, 3, 5, 7 and 10 at.%) co-doped YPO4:5Eu under 240, 250, 260, 270, 280, 290, 300, 340, 350 and 399 nm excitations.

Generic image for table

Click to view

Table II.

Parameters obtained after bi-exponential decay fit to data of as-prepared (ASP) and 500 °C annealed samples (500 °C). Excitation and emission wavelengths are fixed at 464 and 594 nm, respectively. Nd-YAG laser source is used.

Loading

Article metrics loading...

/content/aip/journal/adva/2/3/10.1063/1.4739504
2012-07-20
2014-04-25

Abstract

This article explores the tuning of blue to pink colour generation from Li+ ion co-doped YPO4:5Eu nanoparticles prepared by polyol method at ∼100-120 °C with ethylene glycol (EG) as a capping agent. Interaction of EG molecules capped on the surface of the nanoparticles and/or created oxygen vacancies induces formation of intermediate/mid gap bands in the host structure, which is supported by UV-Visible absorption data. Strong blue and pink colors can be observed in the cases of as-prepared and 500 °C annealed samples, respectively. Co-doping of Li+ enhances the emission intensities of intermediate band as well as Eu3+. On annealing as-prepared sample to 500 °C, the intermediate band emission intensity decreases, whereas Eu3+ emission intensity increases suggesting increase of extent of energy transfer from the intermediate band to Eu3+ on annealing. Emission intensity ratio of electric to magnetic dipole transitions of Eu3+ can be varied by changing excitation wavelength. The X-ray photoelectron spectroscopy(XPS) study of as-prepared samples confirms the presence of oxygen vacancies and Eu3+ but absence of Eu2+. Dispersed particles in ethanol and polymer film show the strong blue color, suggesting that these materials will be useful as probes in life science and also in light emitting device applications.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/2/3/1.4739504.html;jsessionid=1uk3hvrfhr8w8.x-aip-live-01?itemId=/content/aip/journal/adva/2/3/10.1063/1.4739504&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Observation of intermediate bands in Eu3+ doped YPO4 host: Li+ ion effect and blue to pink light emitter
http://aip.metastore.ingenta.com/content/aip/journal/adva/2/3/10.1063/1.4739504
10.1063/1.4739504
SEARCH_EXPAND_ITEM