Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. J. Choi, T. K. Tseng, M. Davidson, and P. H. Holloway, J. Mater. Chem. 21, 3113 (2011).
2. M. N. Luwang, R. S. Ningthoujam, S. K. Srivastava, and R. K. Vatsa, J. Mater. Chem. 21, 5326 (2011).
3. A. K. Parchur, R. S. Ningthoujam, S. B. Rai, G. S. Okram, R. A. Singh, M. Tyagi, S. C. Gadkari, and R. K. Vatsa, Dalton Trans. 40, 7595 (2011).
4. Y. Y. Li, W. D. Cheng, H. Zhang, C. S. Lin, W. L. Zhang, L. Geng, G. L. Chai, Z. Z. Luo, and Z. Z. He, Dalton Trans. 40, 7357 (2011).
5. H. A. Hoppe, K. Kazmierczak, S. Kacprzak, I. Schellenberg, and R. Pottgen, Dalton Trans. 40, 9971 (2011).
6. A. A. Ansari, M. Alam, J. P. Labis, S. A. Alrokayan, G. Shafi, T. N. Hasan, N. A. Syed, and A. A. Alshatwi, J. Mater. Chem. 21, 19310 (2011).
7. J. C. Batista, P. C. de Sousa Filho, and O. A. Serra, Dalton Trans. 41, 6310 (2012).
8. W. Zheng, H. Zhu, R. Li, D. Tu, Y. Liu, W. Luo, and X. Chen, Phys. Chem. Chem. Phys. 14, 6974 (2012).
9. K. Binnemans, Chem. Rev. 109, 4283 (2009).
10. Z. Hou, Z. Cheng, G. Li, W. Wang, C. Peng, C. Li, P. Ma, D. Yang, X. Kang, and J. Lin, Nanoscale 3, 1568 (2011).
11. Y. Hirakawa, K. Nakamura, and T. Imasaka, Anal. Chem. 73, 5472 (2001).
12. R. S. Ningthoujam, Enhancement Of Luminescence By Rare Earth Ions Doping In Semiconductor Host, edited by S. B. Rai and Y. Dwivedi (Nova Science Publishers, Inc., Hauppauge, USA, 2012).
13. A. K. Parchur and R. S. Ningthoujam, Dalton Trans. 40, 7590 (2011).
14. A. K. Parchur, A. I. Prasad, A. A. Ansari, S. B. Rai, and R. S. Ningthoujam, Dalton Trans. 2012, DOI:10.1039/C2DT31257C.
15. N. K. Sahu, R. S. Ningthoujam, and D. Bahadur, J. Appl. Phys. 112, 014306 (2012).
16. S. Kundu, A. Kar, and A. Patra, J. Lumin. 132, 1400 (2012).
17. S. A. Camacho, P. H. B. Aoki, C. J. L. Constantino, R. F. Aroca, and A. M. Pires, J. Alloys Comp. (2012), DOI:10.1016/j.jallcom.2012.06.103.
18. A. H. Krumpel, A. J. J. Bos, A. Bessière, E. van der Kolk, and P. Dorenbos, Phy. Rev. B 80, 085103 (2009).
19. A.-S. Cho, G. K. Choi, J.-S. An, J-R. Kim, and K. S. Hong, Mater. Res. Bull. 44, 173 (2009).
20. L. Li and S. Zhang, J. Phys. Chem. B 110, 21438 (2006).
21. P. K. Chakrabarti, K. N. Chattopadhyay, S. Modak, and J. Mondal, Hyperf. Interact. 175, 131 (2007).
22. O. K. Moune, M. D. Faucher, and N. Edelstein, J. Lumin. 96, 51 (2002).
23. L. Qiong, S. Yiguo, Y. Hongsheng, and H. Wei, J. Rare Earth. 26, 495 (2008).
24. M. N. Luwang, R. S. Ningthoujam, Jagannath, S. K. Srivastava, and R. K. Vatsa, J. Am. Chem. Soc. 132, 2759 (2010).
25. J. Huang, R. Gao, Z. Lu, D. Qian, W. Li, B. Huang, and X. He, Opt. Mater. 32, 857 (2010).
26. H. Lai, H. Yang, C. Tao, and X. Yang, Phys. Stat. Sol. (a) 204, 1178 (2007).
27. K. S. Sohn, I. W. Zeon, H. Chang, S. K. Lee, and H. D. Park, Chem. Mater. 14, 2140 (2002).
28. Z. Huo, C. Chen, and Y. Li, Chem. Commun. 3522 (2006).
29. L. Li, Y. Su, and G. Li, J. Mater. Chem. 20, 459 (2010).
30. J. W. Stouwdam, G. A. Hebbink, J. Huskens, and F. C. J. M. van Veggel, Chem. Mater. 15, 4604 (2003).
31. H. Guo, F. Li, J. Li, and H. Zhang, J. Am. Ceram. Soc. 94, 1651 (2011).
32. S. Ray, A. Banerjee, and P. Pramanik, Mater. Res. Bull. 45, 870 (2010).
33. B. D. Cullity, Elements of X-ray Diffraction, second edition (Addision-Wesley, USA, 1959).
34. W. Kemp, Organic Spectroscopy, second edition (Macmillan Education Ltd., Hampshire, 1975).
35. G. M. Begun, G. W. Beall, L. A. Boatner, and W. J. Gregor, J. Raman Spectrosc. 11, 273 (1981).
36. W. Di, X. Zhao, S. Lu, X. Wang, and H. Zhao, J. Solid State Chem. 180, 2478 (2007).
37. K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds (Wiley, New York, 1986).
38. Y. Y. Tay, S. Li, C. Q. Sun, and P. Chen, Appl. Phys. Lett. 88, 173118 (2006).
39. See supplementary material at for parameters obtained after mono-exponential equation fitting to decay data, deconvolution of O(1s) peak, luminescence spectra of 3 and 7 at.% Li+ co-doped YPO4:5Eu, Behavior of electric and magnetic dipole transitions of Eu3+ under different Li+ ion co-doping at different excitation wavelengths and mono-exponential fitting to luminescence decay data. [Supplementary Material]
40. B. R. Judd, Phys. Rev. 127, 750 (1962).
41. R. X. Yan, X. M. Sun, X. Wang, Q. Peng, and Y. D. Li, J. Chem. Eur. 11, 2183 (2005).
42. R. S. Ningthoujam, V. Sudarsan, and S. K. Kulshreshtha, J. Lumin. 127, 747 (2007).
43. R. S. Ningthoujam, N. S. Gajbhiye, A. Ahmed, S. S. Umre, and S. J. Sharma, J. Nanosci. Nanotechn. 8, 3059 (2008).
44. G. Phaomei, R. S. Ningthoujam, W. R. Singh, N. S. Singh, M. N. Luwang, R. Tewari, and R. K. Vatsa, Opt. Mater. 32, 616 (2010).
45. P. Babu and C. K. Jayasankar, Physica B 279, 262 (2000).
46. G. S. R. Raju, E. Pavitra, Y. H. Ko, and J. S. Yu, J. Mater. Chem. 2012, DOI:10.1039/C2JM32049E.
47. A. K. Parchur, G. S. Okram, R. A. Singh, R. Tewari, L. Pradhan, R. K. Vatsa, and R. S. Ningthoujam, AIP. Conf. Proc. 1313, 391 (2010).

Data & Media loading...


Article metrics loading...



This article explores the tuning of blue to pink colour generation from Li+ ion co-doped YPO4:5Eu nanoparticles prepared by polyol method at ∼100-120 °C with ethylene glycol (EG) as a capping agent. Interaction of EG molecules capped on the surface of the nanoparticles and/or created oxygen vacancies induces formation of intermediate/mid gap bands in the host structure, which is supported by UV-Visible absorption data. Strong blue and pink colors can be observed in the cases of as-prepared and 500 °C annealed samples, respectively. Co-doping of Li+ enhances the emission intensities of intermediate band as well as Eu3+. On annealing as-prepared sample to 500 °C, the intermediate band emission intensity decreases, whereas Eu3+ emission intensity increases suggesting increase of extent of energy transfer from the intermediate band to Eu3+ on annealing. Emission intensity ratio of electric to magnetic dipole transitions of Eu3+ can be varied by changing excitation wavelength. The X-ray photoelectron spectroscopy(XPS) study of as-prepared samples confirms the presence of oxygen vacancies and Eu3+ but absence of Eu2+. Dispersed particles in ethanol and polymer film show the strong blue color, suggesting that these materials will be useful as probes in life science and also in light emitting device applications.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd