Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. K. Yosida and M. Tachiki, Prog. Theor. Phys. 17, 331 (1957).
2. V. A. M. Brabers, Phys. Rev. Lett. 68, 3113 (1992).
3. C. R. Alves, R. Aquino, J. Depeyrot, T. A. P. Cotta, M. H. Sousa, F. A. Tourinho, H. R. Rechenberg, and G. F. Goya, J. Appl. Phys. 99, 08M905 (2006).
4. M. Verveka, Z. Jirak, O. Kaman, K. Knizek, M. Marysko, E. Pollert, K. Zaveta, A. Lancok, M. Dlouha, and S. Vratislav, Nanotechnology 22, 345701 (2011).
5. A. V. Ramos, M. J. Guittet, J. B. Moussy, R. Mattana, C. Deranlot, F. Petroff, and C. Gatel, Appl. Phys. Lett. 91, 122107 (2007).
6. H. Zheng, J. Wang, S. E. Lofland, Z. Ma, L. M. Ardabili, T. Zhao, L. S. Riba, S. R. Shinde, S. B. Ogale, F. Bai, D. Viehland, Y. Jia, D. G. Schlom, M. Wuttig, A. Roytburd, and R. Ramesh, Science 303, 661 (2004).
7. Y. Wu, J. G. Wan, J. M. Liu, and G. Wang, Appl. Phys. Lett. 96, 152902 (2010).
8. R. K. Gilchrist, R. Medal, W. D. Shorey, R. C. Hanselman, J. C. Parrot, and C. B. Taylor, Annals of Surgery 146, 596 (1957).
9. A. Jordan, R. Scholz, P. Wust, H. Fahling, J. Krause, W. Wlodarczyk, B. Sander, T. Vogl, and R. Felix, Int. J. Hyperthermia 13, 587 (1997).
10. M. H. A. Guedes, N. Sadeghiani, D. L. G. Peixoto, J. P. Coelho, L. S. Barbosa, R. B. Azevedo, S. Kückelhaus, M. F. Da Silva, P. C. Morais, and Z. G. M. Lacava, J. Magn. Magn. Mater. 293, 283 (2005).
11. A. Ito, H. Honda, and T. Kobayashi, Cancer Immunol. Immunother. 55, 320 (2006).
12. C. L. Dennis, A. J. Jackson, J. A. Borchers, P. J. Hoopes, R. Strawbridge, A. R. Foreman, J. van Lierop, C. Grüettner, and R. Ivkov, Nanotechnology 20, 395103 (2009).
13. F. F. Fachini and A. F. Bakuzis, J. Appl. Phys. 108, 084309 (2010).
14. W. Andrä, C. G. d’Ambly, R. Hergt, I. Hilger, and W. A. Kaiser, J. Magn. Magn. Mater. 194, 197 (1999).
15. R. E. Rosensweig, J. Magn. Magn. Mater. 252, 370 (2002).
16. A. S. Eggeman, S. A. Majetich, D. Farrel, and Q. A. Pankhust, IEEE Trans. Magn. 43, 2451 (2007).
17. K. M. Krishnan, IEEE Trans. Magn. 46, 2523 (2010).
18. I. Hilger, R. Hergt, and W. A. Kaiser, IEE Proc. Nanobiotechnology 152, 33 (2005).
19. J. Carrey, B. Mehdaoui, and M. Respaud, J. Appl. Phys. 109, 083921 (2011).
20. W. F. Brown Jr., Phys. Rev. 130, 1677 (1963).
21. G. T. Landi and A. F. Bakuzis, J. Appl. Phys. 111, 083915 (2012).
22. M. H. Sousa, F. A. Tourinho, J. Depeyrot, and G. J. da Silva, J. Phys. Chem. B 105, 1168 (2001).
23. R. Itri, J. Depeyrot, F. A. Tourinho, and M. H. Sousa, Eur. Phys. J. E 4, 201 (2001).
24. A. F. Bakuzis, P. C. Morais, and F. A. Tourinho, J. Magn. Reson. 122, 100 (1996).
25. A. F. Bakuzis, P. C. Morais, and F. Pelegrini, J. Appl. Phys. 85, 7480 (1999).
26. V. P. Shilov, Y. L. Raikher, J. C. Bacri, F. Gazeau, and R. Perzynski, Phys. Rev. B 60, 11902 (1999).
27. H. G. Belgers and J. Smit, Philips Res. Rep. 10, 113 (1955).
28. J. G. Otero, A. J. G. Bastida, and J. Rivas, J. Magn. Magn. Mater. 189, 377 (1998).
29. B. D. Cullity and C. D. Grahan, Introduction to Magnetic Materials (John Wiley& Sons, New York, 2009).
30. A. Donev, I. Cisse, D. Sachs, E. A. Variano, F. H. Stillinger, R. Connelly, S. Torquato, and P. M. Chaikin, Science 303, 990 (2004).
31. E. L. Verde, G. T. Landi, J. A. Gomes, M. H. Sousa, and A. F. Bakuzis, J. Appl. Phys. 111, 123902 (2012).
32. J. A. Gomes, M. H. Sousa, F. A. Tourinho, R. Aquino, G. J. Silva, J. Depeyrot, E. Dubois, and R. Perzynski, J. Phys. Chem. C 112, 6220 (2008).
33. R. H. Kodama, A. E. Berkowitz, E. J. McNiff, and S. Foner, Phys. Rev. Lett. 77, 394 (1996).
34. J. M. D. Coey, Phys. Rev. Lett. 27, 1140 (1971).
35. E. C. Sousa, M. H. Sousa, G. F. Goya, H. R. Hechenberg, M. C. F. L. Lara, F. A. Tourinho, and J. Depeyrot, J. Magn. Magn. Mater. 272-276, e1215 (2004).
36. D. E. Bordelon, C. Cornejo, C. Brüttner, F. Westphal, T. L. DeWeese, and R. Ivkov, J. Appl. Phys. 109, 124904 (2011).
37. S. A. Gudoshnikov, B. Ya. Liubimov, and N. A. Usov, AIP Advances 2, 12143 (2012).
38. G. T. Landi, J. Appl. Phys. 111, 043901 (2012).
39. I. S. Poperechny, Y. L. Raikher, and V. I. Stepanov, Phys. Rev. B 82, 174423 (2010).
40. N. A. Usov, J. Appl. Phys. 107, 123909 (2010).
41. J. L. Dormann, F. DÓrazi, F. Lucari, E. Tronc, P. Prené, J. P. Jolivet, D. Fiorani, R. Cherkaoui, and M. Noguès, Phys. Rev. B 53, 14291 (1996).
42. T. Maehura, K. Konishi, T. Kamimori, H. Aono, H. Hirazawa, T. Naohara, S. Nomura, H. Kikkawa, Y. Watanase, and K. Kawachi, J. Mater. Sci. 40, 135 (2005).
43. M. Jeun, S. Bae, A. Tomitaka, Y. Takemura, K. H. Park, S. H. Paek, and K. Chung, Appl. Phys.Lett. 95, 082501 (2009).
44. J. H. Lee, J. t. s. Jang, J. Choi, S. H. Moon, S. h. Noh, J. w. Kim, J. G. Kim, I. S. Kim, K. I. Park, and J. Cheon, Nature Nanotechnology 6, 418 (2011).
45. V. P. Chauhan, T. Stylianopoulos, J. D. Martin, Z. Popovic, O. Chen, W. S. Kamoun, M. G. Bawendi, D. Fukumura, and R. K. Jain, Nature Nanotechnology 7, 383 (2012).
46. B. Mehdaoui, J. Carrey, M. Stadler, A. Cornejo, C. Nayral, F. Delpech, B. Chaudret, and M. Respaud, Appl. Phys.Lett. 100, 052403 (2012).
47. M. T. A. Eloi, J. L. Santos Jr., P. C. Morais, and A. F. Bakuzis, Phys. Rev. E 82, 021407 (2010).
48. E. R. Cintra, F. S. Ferreira, J. L. Santos Jr., J. C. Campello, L. M. Socolovsky, E. M. Lima, and A. F. Bakuzis, Nanotechnology 20, 045103 (2009).
49. L. L. Castro, G. R. R. Gonçalves, K. Skeff Neto, P. C. Morais, A. F. Bakuzis, and R. Miotto, Phys. Rev. E 78, 061507 (2008).

Data & Media loading...


Article metrics loading...



Further advances in magnetic hyperthermia might be limited by biological constraints, such as using sufficiently low frequencies and low field amplitudes to inhibit harmful eddy currents inside the patient's body. These incite the need to optimize the heating efficiency of the nanoparticles, referred to as the specific absorption rate (SAR). Among the several properties currently under research, one of particular importance is the transition from the linear to the non-linear regime that takes place as the field amplitude is increased, an aspect where the magnetic anisotropy is expected to play a fundamental role. In this paper we investigate the heating properties of cobaltferrite and maghemite nanoparticles under the influence of a 500 kHz sinusoidal magnetic field with varying amplitude, up to 134 Oe. The particles were characterized by TEM, XRD, FMR and VSM, from which most relevant morphological, structural and magnetic properties were inferred. Both materials have similar size distributions and saturation magnetization, but strikingly different magnetic anisotropies. From magnetic hyperthermia experiments we found that, while at low fields maghemite is the best nanomaterial for hyperthermia applications, above a critical field, close to the transition from the linear to the non-linear regime, cobaltferrite becomes more efficient. The results were also analyzed with respect to the energy conversion efficiency and compared with dynamic hysteresis simulations. Additional analysis with nickel, zinc and copper-ferrite nanoparticles of similar sizes confirmed the importance of the magnetic anisotropy and the damping factor. Further, the analysis of the characterization parameters suggested core-shell nanostructures, probably due to a surface passivation process during the nanoparticle synthesis. Finally, we discussed the effect of particle-particle interactions and its consequences, in particular regarding discrepancies between estimated parameters and expected theoretical predictions.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd