1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Field dependent transition to the non-linear regime in magnetic hyperthermia experiments: Comparison between maghemite, copper, zinc, nickel and cobalt ferrite nanoparticles of similar sizes
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/2/3/10.1063/1.4739533
1.
1. K. Yosida and M. Tachiki, Prog. Theor. Phys. 17, 331 (1957).
http://dx.doi.org/10.1143/PTP.17.331
2.
2. V. A. M. Brabers, Phys. Rev. Lett. 68, 3113 (1992).
http://dx.doi.org/10.1103/PhysRevLett.68.3113
3.
3. C. R. Alves, R. Aquino, J. Depeyrot, T. A. P. Cotta, M. H. Sousa, F. A. Tourinho, H. R. Rechenberg, and G. F. Goya, J. Appl. Phys. 99, 08M905 (2006).
http://dx.doi.org/10.1063/1.2163844
4.
4. M. Verveka, Z. Jirak, O. Kaman, K. Knizek, M. Marysko, E. Pollert, K. Zaveta, A. Lancok, M. Dlouha, and S. Vratislav, Nanotechnology 22, 345701 (2011).
http://dx.doi.org/10.1088/0957-4484/22/34/345701
5.
5. A. V. Ramos, M. J. Guittet, J. B. Moussy, R. Mattana, C. Deranlot, F. Petroff, and C. Gatel, Appl. Phys. Lett. 91, 122107 (2007).
http://dx.doi.org/10.1063/1.2787880
6.
6. H. Zheng, J. Wang, S. E. Lofland, Z. Ma, L. M. Ardabili, T. Zhao, L. S. Riba, S. R. Shinde, S. B. Ogale, F. Bai, D. Viehland, Y. Jia, D. G. Schlom, M. Wuttig, A. Roytburd, and R. Ramesh, Science 303, 661 (2004).
http://dx.doi.org/10.1126/science.1094207
7.
7. Y. Wu, J. G. Wan, J. M. Liu, and G. Wang, Appl. Phys. Lett. 96, 152902 (2010).
http://dx.doi.org/10.1063/1.3394008
8.
8. R. K. Gilchrist, R. Medal, W. D. Shorey, R. C. Hanselman, J. C. Parrot, and C. B. Taylor, Annals of Surgery 146, 596 (1957).
http://dx.doi.org/10.1097/00000658-195710000-00007
9.
9. A. Jordan, R. Scholz, P. Wust, H. Fahling, J. Krause, W. Wlodarczyk, B. Sander, T. Vogl, and R. Felix, Int. J. Hyperthermia 13, 587 (1997).
http://dx.doi.org/10.3109/02656739709023559
10.
10. M. H. A. Guedes, N. Sadeghiani, D. L. G. Peixoto, J. P. Coelho, L. S. Barbosa, R. B. Azevedo, S. Kückelhaus, M. F. Da Silva, P. C. Morais, and Z. G. M. Lacava, J. Magn. Magn. Mater. 293, 283 (2005).
http://dx.doi.org/10.1016/j.jmmm.2005.02.052
11.
11. A. Ito, H. Honda, and T. Kobayashi, Cancer Immunol. Immunother. 55, 320 (2006).
http://dx.doi.org/10.1007/s00262-005-0049-y
12.
12. C. L. Dennis, A. J. Jackson, J. A. Borchers, P. J. Hoopes, R. Strawbridge, A. R. Foreman, J. van Lierop, C. Grüettner, and R. Ivkov, Nanotechnology 20, 395103 (2009).
http://dx.doi.org/10.1088/0957-4484/20/39/395103
13.
13. F. F. Fachini and A. F. Bakuzis, J. Appl. Phys. 108, 084309 (2010).
http://dx.doi.org/10.1063/1.3489983
14.
14. W. Andrä, C. G. d’Ambly, R. Hergt, I. Hilger, and W. A. Kaiser, J. Magn. Magn. Mater. 194, 197 (1999).
http://dx.doi.org/10.1016/S0304-8853(98)00552-6
15.
15. R. E. Rosensweig, J. Magn. Magn. Mater. 252, 370 (2002).
http://dx.doi.org/10.1016/S0304-8853(02)00706-0
16.
16. A. S. Eggeman, S. A. Majetich, D. Farrel, and Q. A. Pankhust, IEEE Trans. Magn. 43, 2451 (2007).
http://dx.doi.org/10.1109/TMAG.2007.894127
17.
17. K. M. Krishnan, IEEE Trans. Magn. 46, 2523 (2010).
http://dx.doi.org/10.1109/TMAG.2010.2046907
18.
18. I. Hilger, R. Hergt, and W. A. Kaiser, IEE Proc. Nanobiotechnology 152, 33 (2005).
http://dx.doi.org/10.1049/ip-nbt:20055018
19.
19. J. Carrey, B. Mehdaoui, and M. Respaud, J. Appl. Phys. 109, 083921 (2011).
http://dx.doi.org/10.1063/1.3551582
20.
20. W. F. Brown Jr., Phys. Rev. 130, 1677 (1963).
http://dx.doi.org/10.1103/PhysRev.130.1677
21.
21. G. T. Landi and A. F. Bakuzis, J. Appl. Phys. 111, 083915 (2012).
http://dx.doi.org/10.1063/1.4705392
22.
22. M. H. Sousa, F. A. Tourinho, J. Depeyrot, and G. J. da Silva, J. Phys. Chem. B 105, 1168 (2001).
http://dx.doi.org/10.1021/jp0039161
23.
23. R. Itri, J. Depeyrot, F. A. Tourinho, and M. H. Sousa, Eur. Phys. J. E 4, 201 (2001).
http://dx.doi.org/10.1007/s101890170129
24.
24. A. F. Bakuzis, P. C. Morais, and F. A. Tourinho, J. Magn. Reson. 122, 100 (1996).
http://dx.doi.org/10.1006/jmra.1996.0184
25.
25. A. F. Bakuzis, P. C. Morais, and F. Pelegrini, J. Appl. Phys. 85, 7480 (1999).
http://dx.doi.org/10.1063/1.369383
26.
26. V. P. Shilov, Y. L. Raikher, J. C. Bacri, F. Gazeau, and R. Perzynski, Phys. Rev. B 60, 11902 (1999).
http://dx.doi.org/10.1103/PhysRevB.60.11902
27.
27. H. G. Belgers and J. Smit, Philips Res. Rep. 10, 113 (1955).
28.
28. J. G. Otero, A. J. G. Bastida, and J. Rivas, J. Magn. Magn. Mater. 189, 377 (1998).
http://dx.doi.org/10.1016/S0304-8853(98)00243-1
29.
29. B. D. Cullity and C. D. Grahan, Introduction to Magnetic Materials (John Wiley& Sons, New York, 2009).
30.
30. A. Donev, I. Cisse, D. Sachs, E. A. Variano, F. H. Stillinger, R. Connelly, S. Torquato, and P. M. Chaikin, Science 303, 990 (2004).
http://dx.doi.org/10.1126/science.1093010
31.
31. E. L. Verde, G. T. Landi, J. A. Gomes, M. H. Sousa, and A. F. Bakuzis, J. Appl. Phys. 111, 123902 (2012).
http://dx.doi.org/10.1063/1.4729271
32.
32. J. A. Gomes, M. H. Sousa, F. A. Tourinho, R. Aquino, G. J. Silva, J. Depeyrot, E. Dubois, and R. Perzynski, J. Phys. Chem. C 112, 6220 (2008).
http://dx.doi.org/10.1021/jp7097608
33.
33. R. H. Kodama, A. E. Berkowitz, E. J. McNiff, and S. Foner, Phys. Rev. Lett. 77, 394 (1996).
http://dx.doi.org/10.1103/PhysRevLett.77.394
34.
34. J. M. D. Coey, Phys. Rev. Lett. 27, 1140 (1971).
http://dx.doi.org/10.1103/PhysRevLett.27.1140
35.
35. E. C. Sousa, M. H. Sousa, G. F. Goya, H. R. Hechenberg, M. C. F. L. Lara, F. A. Tourinho, and J. Depeyrot, J. Magn. Magn. Mater. 272-276, e1215 (2004).
http://dx.doi.org/10.1016/j.jmmm.2003.12.295
36.
36. D. E. Bordelon, C. Cornejo, C. Brüttner, F. Westphal, T. L. DeWeese, and R. Ivkov, J. Appl. Phys. 109, 124904 (2011).
http://dx.doi.org/10.1063/1.3597820
37.
37. S. A. Gudoshnikov, B. Ya. Liubimov, and N. A. Usov, AIP Advances 2, 12143 (2012).
http://dx.doi.org/10.1063/1.3688084
38.
38. G. T. Landi, J. Appl. Phys. 111, 043901 (2012).
http://dx.doi.org/10.1063/1.3684629
39.
39. I. S. Poperechny, Y. L. Raikher, and V. I. Stepanov, Phys. Rev. B 82, 174423 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.174423
40.
40. N. A. Usov, J. Appl. Phys. 107, 123909 (2010).
http://dx.doi.org/10.1063/1.3445879
41.
41. J. L. Dormann, F. DÓrazi, F. Lucari, E. Tronc, P. Prené, J. P. Jolivet, D. Fiorani, R. Cherkaoui, and M. Noguès, Phys. Rev. B 53, 14291 (1996).
http://dx.doi.org/10.1103/PhysRevB.53.14291
42.
42. T. Maehura, K. Konishi, T. Kamimori, H. Aono, H. Hirazawa, T. Naohara, S. Nomura, H. Kikkawa, Y. Watanase, and K. Kawachi, J. Mater. Sci. 40, 135 (2005).
http://dx.doi.org/10.1007/s10853-005-5698-x
43.
43. M. Jeun, S. Bae, A. Tomitaka, Y. Takemura, K. H. Park, S. H. Paek, and K. Chung, Appl. Phys.Lett. 95, 082501 (2009).
http://dx.doi.org/10.1063/1.3211120
44.
44. J. H. Lee, J. t. s. Jang, J. Choi, S. H. Moon, S. h. Noh, J. w. Kim, J. G. Kim, I. S. Kim, K. I. Park, and J. Cheon, Nature Nanotechnology 6, 418 (2011).
http://dx.doi.org/10.1038/nnano.2011.95
45.
45. V. P. Chauhan, T. Stylianopoulos, J. D. Martin, Z. Popovic, O. Chen, W. S. Kamoun, M. G. Bawendi, D. Fukumura, and R. K. Jain, Nature Nanotechnology 7, 383 (2012).
http://dx.doi.org/10.1038/nnano.2012.45
46.
46. B. Mehdaoui, J. Carrey, M. Stadler, A. Cornejo, C. Nayral, F. Delpech, B. Chaudret, and M. Respaud, Appl. Phys.Lett. 100, 052403 (2012).
http://dx.doi.org/10.1063/1.3681361
47.
47. M. T. A. Eloi, J. L. Santos Jr., P. C. Morais, and A. F. Bakuzis, Phys. Rev. E 82, 021407 (2010).
http://dx.doi.org/10.1103/PhysRevE.82.021407
48.
48. E. R. Cintra, F. S. Ferreira, J. L. Santos Jr., J. C. Campello, L. M. Socolovsky, E. M. Lima, and A. F. Bakuzis, Nanotechnology 20, 045103 (2009).
http://dx.doi.org/10.1088/0957-4484/20/4/045103
49.
49. L. L. Castro, G. R. R. Gonçalves, K. Skeff Neto, P. C. Morais, A. F. Bakuzis, and R. Miotto, Phys. Rev. E 78, 061507 (2008).
http://dx.doi.org/10.1103/PhysRevE.78.061507
http://aip.metastore.ingenta.com/content/aip/journal/adva/2/3/10.1063/1.4739533
Loading
/content/aip/journal/adva/2/3/10.1063/1.4739533
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/2/3/10.1063/1.4739533
2012-07-20
2014-08-23

Abstract

Further advances in magnetic hyperthermia might be limited by biological constraints, such as using sufficiently low frequencies and low field amplitudes to inhibit harmful eddy currents inside the patient's body. These incite the need to optimize the heating efficiency of the nanoparticles, referred to as the specific absorption rate (SAR). Among the several properties currently under research, one of particular importance is the transition from the linear to the non-linear regime that takes place as the field amplitude is increased, an aspect where the magnetic anisotropy is expected to play a fundamental role. In this paper we investigate the heating properties of cobaltferrite and maghemite nanoparticles under the influence of a 500 kHz sinusoidal magnetic field with varying amplitude, up to 134 Oe. The particles were characterized by TEM, XRD, FMR and VSM, from which most relevant morphological, structural and magnetic properties were inferred. Both materials have similar size distributions and saturation magnetization, but strikingly different magnetic anisotropies. From magnetic hyperthermia experiments we found that, while at low fields maghemite is the best nanomaterial for hyperthermia applications, above a critical field, close to the transition from the linear to the non-linear regime, cobaltferrite becomes more efficient. The results were also analyzed with respect to the energy conversion efficiency and compared with dynamic hysteresis simulations. Additional analysis with nickel, zinc and copper-ferrite nanoparticles of similar sizes confirmed the importance of the magnetic anisotropy and the damping factor. Further, the analysis of the characterization parameters suggested core-shell nanostructures, probably due to a surface passivation process during the nanoparticle synthesis. Finally, we discussed the effect of particle-particle interactions and its consequences, in particular regarding discrepancies between estimated parameters and expected theoretical predictions.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/2/3/1.4739533.html;jsessionid=7j9fk1ju06h7t.x-aip-live-06?itemId=/content/aip/journal/adva/2/3/10.1063/1.4739533&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Field dependent transition to the non-linear regime in magnetic hyperthermia experiments: Comparison between maghemite, copper, zinc, nickel and cobalt ferrite nanoparticles of similar sizes
http://aip.metastore.ingenta.com/content/aip/journal/adva/2/3/10.1063/1.4739533
10.1063/1.4739533
SEARCH_EXPAND_ITEM