1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Disorder-free sputtering method on graphene
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/2/3/10.1063/1.4739783
1.
1. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science 306, 666 (2004).
http://dx.doi.org/10.1126/science.1102896
2.
2. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, Nature 438, 197 (2005).
http://dx.doi.org/10.1038/nature04233
3.
3. Y. B. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim, Nature 438, 201 (2005).
http://dx.doi.org/10.1038/nature04235
4.
4. Young Jun Shin, Ryan Stromberg, Rick Nay, Han Huang, Andrew T. S. Wee, Hyunsoo Yang, and Charanjit S. Bhatia, Carbon 49, 4070 (2011).
http://dx.doi.org/10.1016/j.carbon.2011.05.046
5.
5. C. Lee, X. D. Wei, J. W. Kysar, and J. Hone, Science 321, 385 (2008).
http://dx.doi.org/10.1126/science.1157996
6.
6. Jing Niu, Young Jun Shin, Youngbin Lee, Jong-Hyun Ahn, and Hyunsoo Yang, Appl. Phys. Lett. 100, 061116 (2012).
http://dx.doi.org/10.1063/1.3683534
7.
7. R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, Science 320, 1308 (2008).
http://dx.doi.org/10.1126/science.1156965
8.
8. Yanqing Wu, Yu-Ming Lin, Ageeth A. Bol, Keith A. Jenkins, Fengnian Xia, Damon B. Farmer, Yu Zhu, and Phaedon Avouris, Nature 472, 74 (2011).
http://dx.doi.org/10.1038/nature09979
9.
9. Alexander A. Balandin, Suchismita Ghosh, Wenzhong Bao, Irene Calizo, Desalegne Teweldebrhan, Feng Miao, and Chun Ning Lau, Nano Lett. 8, 902 (2008).
http://dx.doi.org/10.1021/nl0731872
10.
10. S. Kim, J. Nah, I. Jo, D. Shahrjerdi, L. Colombo, Z. Yao, E. Tutuc, and S. K. Banerjee, Appl. Phys. Lett. 94, 062107 (2009).
http://dx.doi.org/10.1063/1.3077021
11.
11. K. Zou, X. Hong, D. Keefer, and J. Zhu, Phys. Rev. Lett. 105, 126601 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.126601
12.
12. D. Huertas-Hernando, F. Guinea, and A. Brataas, Phys. Rev. Lett. 103, 146801 (2009).
http://dx.doi.org/10.1103/PhysRevLett.103.146801
13.
13. N. Tombros, C. Jozsa, M. Popinciuc, H. T. Jonkman, and B. J. van Wees, Nature 448, 571 (2007).
http://dx.doi.org/10.1038/nature06037
14.
14. B. Dlubak, P. Seneor, A. Anane, C. Barraud, C. Deranlot, D. Deneuve, B. Servet, R. Mattana, F. Petroff, and A. Fert, Appl. Phys. Lett. 97, 092502 (2010).
http://dx.doi.org/10.1063/1.3476339
15.
15. Z. Jin, Y. Su, J. W. Chen, X. Y. Liu, and D. X. Wu, Appl. Phys. Lett. 95, 233110 (2009).
http://dx.doi.org/10.1063/1.3271676
16.
16. M. H. Maneshian, F. L. Kuo, K. Mahdak, J. Hwang, R. Banerjee, and N. D. Shepherd, Nanotechnology 22, 7 (2011).
http://dx.doi.org/10.1088/0957-4484/22/20/205703
17.
17. Y. J. Shin, Y. Y. Wang, H. Huang, G. Kalon, A. T. S. Wee, Z. X. Shen, C. S. Bhatia, and H. Yang, Langmuir. 26, 3798 (2010).
http://dx.doi.org/10.1021/la100231u
18.
18. G. Kalon, Y. J. Shin, V. G. Truong, A. Kalitsov, and H. Yang, Appl. Phys. Lett. 99, 083109 (2011).
http://dx.doi.org/10.1063/1.3626854
19.
19. Young Jun Shin, Jae Hyun Kwon, Gopinadhan Kalon, Kai-Tak Lam, Charanjit S. Bhatia, Gengchiau Liang, and Hyunsoo Yang, Appl. Phys. Lett. 97, 262105 (2010).
http://dx.doi.org/10.1063/1.3532849
20.
20. A. C. Ferrari and J. Robertson, Phys. Rev. B 61, 14095 (2000).
http://dx.doi.org/10.1103/PhysRevB.61.14095
21.
21. D. C. Kim, D. Y. Jeon, H. J. Chung, Y. Woo, J. K. Shin, and S. Seo, Nanotechnology 20, 375703 (2009).
http://dx.doi.org/10.1088/0957-4484/20/37/375703
22.
22. S. S. P. Parkin, C. Kaiser, A. Panchula, P. M. Rice, B. Hughes, M. Samant, and S. H. Yang, Nat. Mater. 3, 862 (2004).
http://dx.doi.org/10.1038/nmat1256
23.
23. Z. H. Ni, H. M. Wang, Y. Ma, J. Kasim, Y. H. Wu, and Z. X. Shen, ACS Nano 2, 1033 (2008).
http://dx.doi.org/10.1021/nn800031m
http://aip.metastore.ingenta.com/content/aip/journal/adva/2/3/10.1063/1.4739783
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

Raman spectra of SLG with the various deposition methods.

Image of FIG. 2.

Click to view

FIG. 2.

Schematic of sputtering deposition in the normal configuration with low Ar pressure (a) and the flipping configuration with high Ar pressure (b). The arrows show the trajectory of the sputtered atoms.

Image of FIG. 3.

Click to view

FIG. 3.

Raman spectra of SLG after dc sputtering of 4 nm CoFe (a) and 2 nm Al (b), rf sputtering of 3 nm MgO (c), and reactive sputtering of 1 nm MgO (d) with the normal (blue) and flipping (red) methods.

Image of FIG. 4.

Click to view

FIG. 4.

AFM images of CoFe (a, c) and Al (b, d) on graphene. (a) and (b) show the surface morphology over 1.5 × 1.5 μm2. (c) and (d) show a line profile.

Loading

Article metrics loading...

/content/aip/journal/adva/2/3/10.1063/1.4739783
2012-07-23
2014-04-24

Abstract

Deposition of various materials onto graphene without causing any disorder is highly desirable for graphene applications. Especially, sputtering is a versatile technique to deposit various metals and insulators for spintronics, and indium tin oxide to make transparent devices. However, the sputtering process causes damage to graphene because of high energy sputtered atoms. By flipping the substrate and using a high Ar pressure, we demonstrate that the level of damage to graphene can be reduced or eliminated in dc, rf, and reactive sputtering processes.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/2/3/1.4739783.html;jsessionid=ru9sobvrpp3n.x-aip-live-01?itemId=/content/aip/journal/adva/2/3/10.1063/1.4739783&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Disorder-free sputtering method on graphene
http://aip.metastore.ingenta.com/content/aip/journal/adva/2/3/10.1063/1.4739783
10.1063/1.4739783
SEARCH_EXPAND_ITEM