1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
oa
The effect of PECVD plasma decomposition on the wettability and dielectric constant changes in silicon modified DLC films for potential MEMS and low stiction applications
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/2/3/10.1063/1.4742852
1.
1. T. S. Santra, C. H. Liu, T. K. Bhattacharya, P. Patel, and T. Barik, J. Applied physics. 107, 124324 (2010) P1-9.
http://dx.doi.org/10.1063/1.3415548
2.
2. A. P. Mousinho, R. D. Monsano, M. Massi, and J. M. Jaramillo, Diamond and Related Materials. 12, 10411044 (2003).
http://dx.doi.org/10.1016/S0925-9635(02)00219-4
3.
3. A. D. Romig, M. T. Dugger, and P. J. McWhorter, Acta Materialia. 51, 58375866 (2003).
http://dx.doi.org/10.1016/S1359-6454(03)00440-3
4.
4. H. Tian and T. Matsudiara, IEEE transactions on magnetics. 28(5), 2530 (1992).
http://dx.doi.org/10.1109/20.179546
5.
5. K. Trojan, M. Grieschke, and H. Dimigen, Physica Status Solidi (a). 145, 575 (1994).
http://dx.doi.org/10.1002/pssa.2211450242
6.
6. J. McLaughlin, A. Ogwu, and P. Maguire, Datatech, 3rd Edition, p. 167171 (1999).
7.
7. E. A. Irene, Thin Solid Films. 233, 96111 (1993).
http://dx.doi.org/10.1016/0040-6090(93)90069-2
8.
8. F. M. Fowkes, J. Adhesion. 4, 15567 (1972).
http://dx.doi.org/10.1080/00218467208072219
9.
9. P. H. Owens and R. C. Wendt, J. Appl. polym. sci. 13, 17417 (1969).
http://dx.doi.org/10.1002/app.1969.070130815
10.
10. C. J. Van Oss, R. J. Good, and M. K. Chaudhury, J. Colloid interf. Sci. 37890 (1986).
http://dx.doi.org/10.1016/0021-9797(86)90041-X
11.
11. A. A. Ogwu, E. Bouquerel, O. Ademosu, S. Moh, E. Crossan, and F. Placido, Acta Materialia. 53, 51515159 (2005).
http://dx.doi.org/10.1016/j.actamat.2005.07.035
12.
12. L. Bergstrom, Advances in Colloid and Interface Science. 70, 125169 (1997).
http://dx.doi.org/10.1016/S0001-8686(97)00003-1
13.
13. R. H. French, Journal of the American Ceramic Society. 83(9), 21172146 (2000).
http://dx.doi.org/10.1111/j.1151-2916.2000.tb01527.x
14.
14. V. Medout-Marere, Journal of Colloid and Interface. 228, 434437 (2000).
http://dx.doi.org/10.1006/jcis.2000.6984
15.
15. A. R. Forouhi and I. Bloomer, Phys. Rev. B. 34, 70187086 (1986).
http://dx.doi.org/10.1103/PhysRevB.34.7018
16.
16. J. Friedel in G. Benedek, T. P. Martin, and G. Pacchioni (eds), Elemental and Molecular Clusters, Springer Series in Material Sciences. 6, (springer, Berlin, 1987).
17.
17. A. A. Ogwu, R. W. Lamberton, S. Morley, P. Maguire, and J. McLaughlin, Physica B. 269, 335344 (1999).
http://dx.doi.org/10.1016/S0921-4526(99)00138-6
18.
18. D. Shamiryan, T. Abell, F. Iacopi, and K. Maex, Materials Today. 3439 (2004).
19.
19. T. I. T Okpalugo, E. McKeena, A. C. Magee, J. McLaughlin, and N. M. D. Brown, Journal of Biomedical Mater. Res. A. 71a(2), 201208 (2004).
http://dx.doi.org/10.1002/jbm.a.30104
20.
20. S. P. Jarvis and J. B. Pethica, Thin Solid Films. 273, 284288 (1996).
http://dx.doi.org/10.1016/0040-6090(95)06791-4
21.
21. A. A. Ogwu, R. W. Lamberton, P. Maguire, and J. A. McLaughlin, J. Phys. D: Applied Physics. 32, 981987 (1999).
http://dx.doi.org/10.1088/0022-3727/32/9/306
22.
22. S. Ohki and K. Arnold, Journal of Membrane Biology. 114(3), 195203 (1990).
http://dx.doi.org/10.1007/BF01869214
http://aip.metastore.ingenta.com/content/aip/journal/adva/2/3/10.1063/1.4742852
Loading
/content/aip/journal/adva/2/3/10.1063/1.4742852
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/2/3/10.1063/1.4742852
2012-07-31
2014-10-30

Abstract

We have carried out investigations aimed at understanding the mechanism responsible for a water contact angle increase of up to ten degrees and a decrease in dielectric constant in silicon modified hydrogenated amorphous carbon films compared to unmodified hydrogenated amorphous carbon films. Our investigations based on surface chemical constituent analysis using Raman spectroscopy, x-ray photoelectron spectroscopy(XPS), SIMS, FTIR, contact angle / surface energy measurements and spectroscopic ellipsometry suggests the presence of hydrophobic chemical entities on the surface of the films. This observation is consistent with earlier theoretical plasma chemistry predictions and observed Raman peak shifts in the films. These surfacehydrophobic entities also have a lower polarizability than the bonds in the un-modified films thereby reducing the dielectric constant of the silicon modified films measured by spectroscopic ellipsometry. Ellipsometric dielectric constant measurement is directly related to the surface energy through Hamaker's constant. Our current finding is expected to be of benefit to understanding stiction, friction and lubrication in areas that range from nano-tribology to microfluidics.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/2/3/1.4742852.html;jsessionid=1gvwgjr3y1g4p.x-aip-live-06?itemId=/content/aip/journal/adva/2/3/10.1063/1.4742852&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: The effect of PECVD plasma decomposition on the wettability and dielectric constant changes in silicon modified DLC films for potential MEMS and low stiction applications
http://aip.metastore.ingenta.com/content/aip/journal/adva/2/3/10.1063/1.4742852
10.1063/1.4742852
SEARCH_EXPAND_ITEM