Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. J. E. Field, The Properties of Diamonds (Academic, London, 1979).
2. H. Liu and D. S. Dandy, Diamond Relat. Mater. 4, 1173 (1995).
3. J. C. Angus, H. A. Will, and W. S. Stanko, J. Appl. Phys. 39, 2915 (1968).
4. B. V. Spitsyn, L. L. Bouilov, and B. V. Derjaguin, J. Cryst. Growth 52, 219 (1981).
5. F. J. Himpsel, J. A. Knapp, J. A. Van Vechten, and D. E. Eastman, Phys. Rev. B 20,624 (1979).
6. V. S. Vavilov, Phys. Status Solidi A 31, 11 (1975).
7. K. Okano, H. Naruki, Y. Akiba, T. Kurosu, M. Iida, and Y. Hirose, Jpn. J. Appl. Phys. 27, 173 (1988).
8. P. Wurzinger, P. Pongratz, P. Hartmann, R. Haubner, and B. Lux, Diam. Relate. Mater. 6, 763 (1997).
9. T. Saito, M. Kameta, K. Kusakabe, S. Morooka, H. Maeda, Y. Hayashi, and T. Asano, Japn. J. Appl. Phys. 37, L543 (1998).
10. Satoshi Koizumi, Tokuyuki Teraji, and Hisao Kanda, Diam. Relat. Mater. 9, 935 (2000).
11. H. Kanda, K. W atanabe, S. Koizumia, and T. Teraji, Diam. Relate. Mater. 12, 20 (2003).
12. X. J. Hu, J. S. Ye, H. Hu, X. H. Chen, and Y. G. Shen, Appl. Phys. Lett. 99, 131902 (2011).
13. L. G. Wang and Alex Zunger, Phys. Rev. B 66, 161202 (2002).
14. Sakaguchi, M. N. Gamo, Y. Kikuchi, E. Yasu, H. Haneda, T. Suzuki, and T. Ando, Phys. Rev. B 60, R2139 (1999).
15. J. R. Petherbridge, P. W. May, G. M. Fuge, G. F. Robertson, K. N. Rosser, and M. N. R. Ashfold, J. Appl. Phys. 91, 3605 (2002).
16. G. Morell, A. Gonzalez-Berrıos, B. R. Weiner, and S. Gupta, J. Mater. Sci.: Mater. Electron 17, 443 (2006).
17. R. Krauss, O. Auciello, M. Q. Ding, D. M. Gruen, Y. Huang, V. V. Zhirnov, E. I. Givargizov, A. Breskin, R. Chechen, E. Shefer, V. Konov, S. Pimenov, A. Karabutov, A. Rakhimov, and N. SuetinL, J. Appl. Phys. 89, 2598 (2001).
18. T. D. Corrigan, D. M. Gruen, A. R. Krauss, P. Zapoa, and R. P. H. Chang; Diam. Rel. Mater. 11(1), 4348 (2002).
19. S. Bhattacharyya, O. Auciello, J. Birrell, J. A. Carlisle, L. A. Curtiss, A. N. Goyette, D. M. Gruen, A. R. Krauss, J. Schlueter, A. Sumant, and P. Zapol, Appl. Phys. Lett. 79(10), 14411443 (2001).
20. D. Zhou, A. R. Krauss, L. C. Qin, T. G. McCauley, D. M. Gruen, T. D. Corrigan, R. P. H. Chan, and H. Gnaser, J. Appl. Phys. 82, 4546 (1997).
21. J. Birrell, J. E. Gerbi, O. Auciello, J. M. Gibson, D. M. Gruen, and J. A. Carlisle, J. Appl. Phys. 93, 5606 (2003).
22. Y. C. Chen, N. H. Tai, and I. N. Lin, Diam. Relate. Mater. 17, 457 (2008).
23. K. J. Sankaran, P. T. Joseph, N. H. Tai, and I. N. Lin, Diam. Relate. Mater. 19, 927 (2010).
24. C. R. Lin, W. H. Liao, D. H. Wei, J. S. Tsai, C. K. Chang, and W. C. Fang, Diam. Relate. Mater. 20, 380 (2011).
25. P. C. Huang, W. C. Shih, H. C. Chen, and I. N. Lin, J. Appl. Phys. 109, 084309 (2011).
26. K. Y. Teng, W. C. Shih, P. C. Huang, H. C. Chen, C. Y. Tang, and I. N. Lin, J. Appl. Phys., in press.
27. R. H. Fowler and L. Nordheim, Proc. R. Soc. London, Ser. A 119, 173 (1928).
28. M. Weyland, Topics in Catalysis 21(4), 175 (2002).
29. P. A. Midgley, M. Weyland, Ultramicroscopy 96, 413431 (2003).
30. S. Bals, G. Van Tendeloo, and C. Kisielowski, Adv. Mater. 18, 892895 (2006).
32. Z. Sun, J. R. Shi, B. K. Tay, and S. P. Lau, Diam. Relat. Mater. 9, 1979 (2000).
33. C. Ferrari and J. Robertson, Phys. Rev. B 63, 121405 (2001).
34. C. Ferrari and J. Robertson, Phys. Rev. B 61, 14095 (2000).
35. J. Michler, Y. von Kaenel, J. Stiegler, and E. Blank, J. Appl. Phys. 83, 187 (1998).
36. Y. C. Lee, S. J. Lin, I. N. Lin, and H. F. Cheng, J. Appl. Phys. 97(5), 054310 (2005).
37. I. N. Lin, H. C. Chen, C. S. Wang, Y. R. Lee, and C. Y. Lee, Cryst Eng Comm. 13, 60826089 (2011).
38. D. C. Li, L. Dai, S. Huang, A. W. H. Mau, and Z. L. Wang, Chem. Phys. Lett. 316, 349 (2000).
39. E. F. Kukovitsky, S. G. L’vov, and N. A. Sainov, Chem. Phys. Lett. 317, 65 (2000).
40. S. B. Sinnott, R. Andrews, D. Qian, A. M. Rao, Z. Mao, E. C. Dickey, and F. Derbyshire, Chem. Phys. Lett. 315, 25 (1999).
41. Gorbunov, O. Jost, W. Pompe, and A. Graff, Carbon 40, 113 (2002).

Data & Media loading...


Article metrics loading...



The Fe-coating and H2-annealed processes markedly increased the conductivity and enhanced the surface electron field emission (s-EFE) properties for the diamondfilms. The enhancement on the s-EFE properties for the diamondfilms is presumably owing to the formation of nano-graphite clusters on the surface of the films via the Fe-to-diamond interaction. However, the extent of enhancement varied with the granular structure of the diamondfilms. For the microcrystalline (MCD)films, the s-EFE process can be turned on at (E0)MCD = 1.9 V/μm, achieving a large s-EFE current density of (Je)MCD = 315 μA/cm2 at an applied field of 8.8 V/μm. These s-EFE properties are markedly better than those for Fe-coated/annealed ultrananocrystalline diamond(UNCD)films with (E0)UNCD = 2.0 V/μm and (Je)UNCD = 120 μA/cm2. The transmission electron microscopy showed that the nano-graphite clusters formed an interconnected network for MCDfilms that facilitated the electron transport more markedly, as compared with the isolated nano-graphitic clusters formed at the surface of the UNCDfilms. Therefore, the Fe-coating/annealing processes improved the s-EFE properties for the MCDfilms more markedly than that for the UNCDfilms. The understanding on the distribution of the nano-clusters is of critical importance in elucidating the authentic factor that influences the s-EFE properties of the diamondfilms. Such an understanding is possible only through the 3D-tomographic investigations.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd