1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
The 3D-tomography of the nano-clusters formed by Fe-coating and annealing of diamond films for enhancing their surface electron field emitters
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/2/3/10.1063/1.4748865
1.
1. J. E. Field, The Properties of Diamonds (Academic, London, 1979).
2.
2. H. Liu and D. S. Dandy, Diamond Relat. Mater. 4, 1173 (1995).
http://dx.doi.org/10.1016/0925-9635(96)00297-2
3.
3. J. C. Angus, H. A. Will, and W. S. Stanko, J. Appl. Phys. 39, 2915 (1968).
http://dx.doi.org/10.1063/1.1656693
4.
4. B. V. Spitsyn, L. L. Bouilov, and B. V. Derjaguin, J. Cryst. Growth 52, 219 (1981).
http://dx.doi.org/10.1016/0022-0248(81)90197-4
5.
5. F. J. Himpsel, J. A. Knapp, J. A. Van Vechten, and D. E. Eastman, Phys. Rev. B 20,624 (1979).
http://dx.doi.org/10.1103/PhysRevB.20.624
6.
6. V. S. Vavilov, Phys. Status Solidi A 31, 11 (1975).
http://dx.doi.org/10.1002/pssa.2210310102
7.
7. K. Okano, H. Naruki, Y. Akiba, T. Kurosu, M. Iida, and Y. Hirose, Jpn. J. Appl. Phys. 27, 173 (1988).
http://dx.doi.org/10.1143/JJAP.27.L173
8.
8. P. Wurzinger, P. Pongratz, P. Hartmann, R. Haubner, and B. Lux, Diam. Relate. Mater. 6, 763 (1997).
http://dx.doi.org/10.1016/S0925-9635(96)00668-1
9.
9. T. Saito, M. Kameta, K. Kusakabe, S. Morooka, H. Maeda, Y. Hayashi, and T. Asano, Japn. J. Appl. Phys. 37, L543 (1998).
http://dx.doi.org/10.1143/JJAP.37.L543
10.
10. Satoshi Koizumi, Tokuyuki Teraji, and Hisao Kanda, Diam. Relat. Mater. 9, 935 (2000).
http://dx.doi.org/10.1016/S0925-9635(00)00217-X
11.
11. H. Kanda, K. W atanabe, S. Koizumia, and T. Teraji, Diam. Relate. Mater. 12, 20 (2003).
http://dx.doi.org/10.1016/S0925-9635(02)00243-1
12.
12. X. J. Hu, J. S. Ye, H. Hu, X. H. Chen, and Y. G. Shen, Appl. Phys. Lett. 99, 131902 (2011).
http://dx.doi.org/10.1063/1.3641458
13.
13. L. G. Wang and Alex Zunger, Phys. Rev. B 66, 161202 (2002).
http://dx.doi.org/10.1103/PhysRevB.66.161202
14.
14. Sakaguchi, M. N. Gamo, Y. Kikuchi, E. Yasu, H. Haneda, T. Suzuki, and T. Ando, Phys. Rev. B 60, R2139 (1999).
http://dx.doi.org/10.1103/PhysRevB.60.R2139
15.
15. J. R. Petherbridge, P. W. May, G. M. Fuge, G. F. Robertson, K. N. Rosser, and M. N. R. Ashfold, J. Appl. Phys. 91, 3605 (2002).
http://dx.doi.org/10.1063/1.1448679
16.
16. G. Morell, A. Gonzalez-Berrıos, B. R. Weiner, and S. Gupta, J. Mater. Sci.: Mater. Electron 17, 443 (2006).
http://dx.doi.org/10.1007/s10854-006-8090-y
17.
17. R. Krauss, O. Auciello, M. Q. Ding, D. M. Gruen, Y. Huang, V. V. Zhirnov, E. I. Givargizov, A. Breskin, R. Chechen, E. Shefer, V. Konov, S. Pimenov, A. Karabutov, A. Rakhimov, and N. SuetinL, J. Appl. Phys. 89, 2598 (2001).
http://dx.doi.org/10.1063/1.1320009
18.
18. T. D. Corrigan, D. M. Gruen, A. R. Krauss, P. Zapoa, and R. P. H. Chang; Diam. Rel. Mater. 11(1), 4348 (2002).
http://dx.doi.org/10.1016/S0925-9635(01)00517-9
19.
19. S. Bhattacharyya, O. Auciello, J. Birrell, J. A. Carlisle, L. A. Curtiss, A. N. Goyette, D. M. Gruen, A. R. Krauss, J. Schlueter, A. Sumant, and P. Zapol, Appl. Phys. Lett. 79(10), 14411443 (2001).
http://dx.doi.org/10.1063/1.1400761
20.
20. D. Zhou, A. R. Krauss, L. C. Qin, T. G. McCauley, D. M. Gruen, T. D. Corrigan, R. P. H. Chan, and H. Gnaser, J. Appl. Phys. 82, 4546 (1997).
http://dx.doi.org/10.1063/1.366190
21.
21. J. Birrell, J. E. Gerbi, O. Auciello, J. M. Gibson, D. M. Gruen, and J. A. Carlisle, J. Appl. Phys. 93, 5606 (2003).
http://dx.doi.org/10.1063/1.1564880
22.
22. Y. C. Chen, N. H. Tai, and I. N. Lin, Diam. Relate. Mater. 17, 457 (2008).
http://dx.doi.org/10.1016/j.diamond.2007.10.020
23.
23. K. J. Sankaran, P. T. Joseph, N. H. Tai, and I. N. Lin, Diam. Relate. Mater. 19, 927 (2010).
http://dx.doi.org/10.1016/j.diamond.2010.02.027
24.
24. C. R. Lin, W. H. Liao, D. H. Wei, J. S. Tsai, C. K. Chang, and W. C. Fang, Diam. Relate. Mater. 20, 380 (2011).
http://dx.doi.org/10.1016/j.diamond.2010.12.015
25.
25. P. C. Huang, W. C. Shih, H. C. Chen, and I. N. Lin, J. Appl. Phys. 109, 084309 (2011).
http://dx.doi.org/10.1063/1.3569887
26.
26. K. Y. Teng, W. C. Shih, P. C. Huang, H. C. Chen, C. Y. Tang, and I. N. Lin, J. Appl. Phys., in press.
27.
27. R. H. Fowler and L. Nordheim, Proc. R. Soc. London, Ser. A 119, 173 (1928).
http://dx.doi.org/10.1098/rspa.1928.0091
28.
28. M. Weyland, Topics in Catalysis 21(4), 175 (2002).
http://dx.doi.org/10.1023/A:1021385427655
29.
29. P. A. Midgley, M. Weyland, Ultramicroscopy 96, 413431 (2003).
http://dx.doi.org/10.1016/S0304-3991(03)00105-0
30.
30. S. Bals, G. Van Tendeloo, and C. Kisielowski, Adv. Mater. 18, 892895 (2006).
http://dx.doi.org/10.1002/adma.200502201
32.
32. Z. Sun, J. R. Shi, B. K. Tay, and S. P. Lau, Diam. Relat. Mater. 9, 1979 (2000).
http://dx.doi.org/10.1016/S0925-9635(00)00349-6
33.
33. C. Ferrari and J. Robertson, Phys. Rev. B 63, 121405 (2001).
http://dx.doi.org/10.1103/PhysRevB.63.121405
34.
34. C. Ferrari and J. Robertson, Phys. Rev. B 61, 14095 (2000).
http://dx.doi.org/10.1103/PhysRevB.61.14095
35.
35. J. Michler, Y. von Kaenel, J. Stiegler, and E. Blank, J. Appl. Phys. 83, 187 (1998).
http://dx.doi.org/10.1063/1.366672
36.
36. Y. C. Lee, S. J. Lin, I. N. Lin, and H. F. Cheng, J. Appl. Phys. 97(5), 054310 (2005).
http://dx.doi.org/10.1063/1.1852068
37.
37. I. N. Lin, H. C. Chen, C. S. Wang, Y. R. Lee, and C. Y. Lee, Cryst Eng Comm. 13, 60826089 (2011).
http://dx.doi.org/10.1039/c1ce05517h
38.
38. D. C. Li, L. Dai, S. Huang, A. W. H. Mau, and Z. L. Wang, Chem. Phys. Lett. 316, 349 (2000).
http://dx.doi.org/10.1016/S0009-2614(99)01334-2
39.
39. E. F. Kukovitsky, S. G. L’vov, and N. A. Sainov, Chem. Phys. Lett. 317, 65 (2000).
http://dx.doi.org/10.1016/S0009-2614(99)01299-3
40.
40. S. B. Sinnott, R. Andrews, D. Qian, A. M. Rao, Z. Mao, E. C. Dickey, and F. Derbyshire, Chem. Phys. Lett. 315, 25 (1999).
http://dx.doi.org/10.1016/S0009-2614(99)01216-6
41.
41. Gorbunov, O. Jost, W. Pompe, and A. Graff, Carbon 40, 113 (2002).
http://dx.doi.org/10.1016/S0008-6223(01)00080-X
http://aip.metastore.ingenta.com/content/aip/journal/adva/2/3/10.1063/1.4748865
Loading
/content/aip/journal/adva/2/3/10.1063/1.4748865
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/2/3/10.1063/1.4748865
2012-08-23
2014-07-29

Abstract

The Fe-coating and H2-annealed processes markedly increased the conductivity and enhanced the surface electron field emission (s-EFE) properties for the diamondfilms. The enhancement on the s-EFE properties for the diamondfilms is presumably owing to the formation of nano-graphite clusters on the surface of the films via the Fe-to-diamond interaction. However, the extent of enhancement varied with the granular structure of the diamondfilms. For the microcrystalline (MCD)films, the s-EFE process can be turned on at (E0)MCD = 1.9 V/μm, achieving a large s-EFE current density of (Je)MCD = 315 μA/cm2 at an applied field of 8.8 V/μm. These s-EFE properties are markedly better than those for Fe-coated/annealed ultrananocrystalline diamond(UNCD)films with (E0)UNCD = 2.0 V/μm and (Je)UNCD = 120 μA/cm2. The transmission electron microscopy showed that the nano-graphite clusters formed an interconnected network for MCDfilms that facilitated the electron transport more markedly, as compared with the isolated nano-graphitic clusters formed at the surface of the UNCDfilms. Therefore, the Fe-coating/annealing processes improved the s-EFE properties for the MCDfilms more markedly than that for the UNCDfilms. The understanding on the distribution of the nano-clusters is of critical importance in elucidating the authentic factor that influences the s-EFE properties of the diamondfilms. Such an understanding is possible only through the 3D-tomographic investigations.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/2/3/1.4748865.html;jsessionid=ah0i5om5rk07c.x-aip-live-06?itemId=/content/aip/journal/adva/2/3/10.1063/1.4748865&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: The 3D-tomography of the nano-clusters formed by Fe-coating and annealing of diamond films for enhancing their surface electron field emitters
http://aip.metastore.ingenta.com/content/aip/journal/adva/2/3/10.1063/1.4748865
10.1063/1.4748865
SEARCH_EXPAND_ITEM