1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Electronic, structural, and elastic properties of metal nitrides XN (X = Sc, Y): A first principle study
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/2/3/10.1063/1.4751260
1.
1. P. E. Van Camp, V. E. Van Doren, and J. T. Devreese, Phys. Rev. B 44, 9056 (1991).
http://dx.doi.org/10.1103/PhysRevB.44.9056
2.
2. W. M. Yim and R. J. Paff, J. Appl. Phys. 45, 1456 (1974).
http://dx.doi.org/10.1063/1.1663432
3.
3. N. Takeuchi, Phys. Rev. B 65, 045204 (2002).
http://dx.doi.org/10.1103/PhysRevB.65.045204
4.
4. H. A. Al-Brithen, A. R. Smith, and D. Gall, Phys. Rev. B 70, 045303 (2004).
http://dx.doi.org/10.1103/PhysRevB.70.045303
5.
5. J. E. Sundgreen, B. O. Johansson, A. Rockett, S. A. Barnett, and J. E. Greene, Physics and Chemistry of Protective Coatings, J. E. Greene, W. D. Sproul, and J. A. Thornton, (eds.), 149 (American Institute of Physics, 1986).
6.
6. J. H. Edgar, T. Bohnen, and P. R. Hageman, J. Cryst. Growth 13/14, 365 (1972).
http://dx.doi.org/10.1016/0022-0248(72)90185-6
7.
7. D. Gall, I. Petrov, N. Hellgren, L. Hultman, J. E. Sundgren, and J. E. Greene, Journal of Applied Physics 84, 6034 (1998).
http://dx.doi.org/10.1063/1.368913
8.
8. D. Gall, I. Petrov, L. D. Madsen, J.-E. Sundgren, and J. E. Greene, J. Vac. Sci. Technol. A 16, 2411 (1998).
http://dx.doi.org/10.1116/1.581360
9.
9. N. Takeuchi and S. E. Ulloa, Phys. Rev. B 65, 235307 (2002).
http://dx.doi.org/10.1103/PhysRevB.65.235307
10.
10. A. Houari, S. F. Matar, and M. A. Belkhir, Comp. Mater. Sc. 43, 392 (2008).
http://dx.doi.org/10.1016/j.commatsci.2007.12.005
11.
11. S. Vepřek, J. Vac. Sci. Technol. A 17, 2401 (1999).
http://dx.doi.org/10.1116/1.581977
12.
12. P. Neslǎdek and S. Vepřek, Phys. Status Solidi A 177, 53 (2000).
http://dx.doi.org/10.1002/(SICI)1521-396X(200001)177:1<53::AID-PSSA53>3.0.CO;2-H
13.
13. P. Pandit, B. Rakshit, and S. P. Sanyal, Phys. Status Solidi B 248, 921 (2011).
http://dx.doi.org/10.1002/pssb.201046236
14.
14. C. Constantin, H. Al-Brithen, M. B. Haider, D. Ingram, and A. R. Smith, Phys. Rev. B 70, 193309 (2004).
http://dx.doi.org/10.1103/PhysRevB.70.193309
15.
15. C. Constantin, H. Al-Brithen, M. B. Haider, D. Ingram, A. R. Smith, N. Sandler, K. Sun, and P. Ordejon, J. Appl. Phys. 98, 123501 (2005).
http://dx.doi.org/10.1063/1.2140889
16.
16. V. Ranjan, L. Bellaiche, and E. J. Walter, Phys. Rev. Lett. 90, 257602 (2003).
http://dx.doi.org/10.1103/PhysRevLett.90.257602
17.
17. V. Ranjan, S. Bin-Omran, D. Sichuga, R. Nichols, L. Bellaiche, and A. Alsaad, Phys. Rev. 72, 85315 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.085315
18.
18. C. Stampfl, W. Mannstadt, R. Asahi, and A. J. Freeman, Phys. Rev. B 63, 155106 (2001).
http://dx.doi.org/10.1103/PhysRevB.63.155106
19.
19. T. Y. Lu and M. C. Huang, Chin. Phys. 16, 62 (2007).
http://dx.doi.org/10.1088/1009-1963/16/9/005
20.
20. Y. Cherchab, N. Amrani, B. amd Sekkal, M. Ghezali, and K. Talbi, Physica E 40, 606 (2008).
http://dx.doi.org/10.1016/j.physe.2007.08.122
21.
21. S. Zerroung, F. A. Sahraoui, and N. Bouarissa, Appl. Phys. A 97, 345 (2009).
http://dx.doi.org/10.1007/s00339-009-5243-x
22.
22. J. M. Gregoire, S. D. Kirby, M. E. Turk, and R. B. van Dover, Thin Solid Films 517, 1607 (2009).
http://dx.doi.org/10.1016/j.tsf.2008.09.076
23.
23. Z. J. Chen, H. Y. Xiabo, and X. T. Zu (2007).
24.
24. R. W. J. Wyckoff, Crystal Structure, vol. 1 (Wiley, New York, 1963), 2nd ed..
25.
25. T. D. Moustakas, R. J. Molna, and J. P. Dismukes, Electrochem. Soc. Proc. 11, 197 (1996).
26.
26. G. Harbeke, E. Meier, and J. P. Dismukes, Optics Commun. 4, 335 (1972).
http://dx.doi.org/10.1016/0030-4018(72)90071-5
27.
27. H. A. Al-Brithen and A. R. Smith, Appl. Phys. Lett. 77, 2484 (2000).
http://dx.doi.org/10.1063/1.1318227
28.
28. N. Takeuchi and S. E. Ulloa, Phys. Rev. B 67, 049901E (2003).
http://dx.doi.org/10.1103/PhysRevB.67.049901
29.
29. B. Saha, T. D. Sands, and U. V. Waghmare, Journal of Applied Physics 109, 073720 (pages 6) (2011).
http://dx.doi.org/10.1063/1.3561499
30.
30. A. Maachou, B. Amrani, and M. Driz, Physica B 35, 384 (2007).
http://dx.doi.org/10.1016/j.physb.2006.06.145
31.
31. C. Stampfl, R. Asahi, and A. J. Freeman, Phys. Rev. B 65, 161204 (2002).
http://dx.doi.org/10.1103/PhysRevB.65.161204
32.
32. W. R. L. Lambrecht, Phys. Rev. B 62, 13538 (2000).
http://dx.doi.org/10.1103/PhysRevB.62.13538
33.
33. A. Bouhemadou, and R. Khenata, Phys. Rev. Lett. A 362, 476 (2007).
http://dx.doi.org/10.1016/j.physleta.2006.10.054
34.
34. S. Duman, S. Bagci, H. M. Tutuncu, G. Ugur, and G. P. Srivastava, Diamond Relat. Mater. 15, 1175 (2006).
http://dx.doi.org/10.1016/j.diamond.2005.12.003
35.
35. B. Amrania and F. E. Hassan, Comput. Mater. Sci. 39, 563 (2007).
http://dx.doi.org/10.1016/j.commatsci.2006.08.009
36.
36. A. Qteish, P. Rinke, M. Scheffler, and J. Neugebauer, Phys. Rev. B 74, 245208 (2006).
http://dx.doi.org/10.1103/PhysRevB.74.245208
37.
37. R. Monnier, J. Rhyner, T. M. Rice, and D. D. Koelling, Phys. Rev. B 31, 5554 (1985).
http://dx.doi.org/10.1103/PhysRevB.31.5554
38.
38. G. Travaglini, F. Marabelli, R. Monnier, E. Kaldis, and P. Wachter, Phys. Rev. B 34, 3876 (1986).
http://dx.doi.org/10.1103/PhysRevB.34.3876
39.
39. L. Tie-Yu and H. Mei-Chun, Chin. Phys. p. 62 (2007).
http://dx.doi.org/10.1088/1009-1963/16/1/011
40.
40. L. Hedin, Phys. Rev. 139, A796 (1965).
http://dx.doi.org/10.1103/PhysRev.139.A796
41.
41. M. Städele, M. Moukara, J. A. Majewski, P. Vogl, and A. Görling, Phys. Rev. B 59, 10031 (1999).
http://dx.doi.org/10.1103/PhysRevB.59.10031
42.
42. R. Asahi, W. Mannstadt, and A. J. Freeman, Phys. Rev. B 59, 7486 (1999).
http://dx.doi.org/10.1103/PhysRevB.59.7486
43.
43. L. Mancera, J. A. Rodriguez, and N. Takeuchi, J. Phys. Condens. Matter 15, 2625 (2003).
http://dx.doi.org/10.1088/0953-8984/15/17/316
44.
44. G. Soto, M. G. Moreno-Armenta, and A. Reyes-Serrato, Comput. Mater. Sci. 42, 8 (2008).
http://dx.doi.org/10.1016/j.commatsci.2007.06.003
45.
45. S. Zerroug, F. A. Sahraoui, and N. Bouarissa, Applied Physics A: Materials Science & Processing 9, 345 (2009).
http://dx.doi.org/10.1007/s00339-009-5243-x
46.
46. V. I. Anisimov, J. Zaanen, and O. K. Andersen, Phys. Rev. B 44, 943 (1991).
http://dx.doi.org/10.1103/PhysRevB.44.943
47.
47. V. I. Anisimov and O. Gunnarsson, Phys. Rev. B 43, 7570 (1991).
http://dx.doi.org/10.1103/PhysRevB.43.7570
48.
48. V. I. Anisimov, F. Aryasetiawan, and A. Lichtenstein, J. Phys.: Condens. Matter 9, 767 (1997).
http://dx.doi.org/10.1088/0953-8984/9/4/002
49.
49. G. K. H. Madsen and P. Novák, Europhys. Lett. 69, 777 (2005).
http://dx.doi.org/10.1209/epl/i2004-10416-x
50.
50. J. Heyd, G. E. Scuseria, and M. Ernzerhof, The Journal of Chemical Physics 124, 219906 (pages 1) (2006).
http://dx.doi.org/10.1063/1.2204597
51.
51. J. Heyd and G. E. Scuseria, The Journal of Chemical Physics 121, 1187 (2004).
http://dx.doi.org/10.1063/1.1760074
52.
52. J. Heyd, G. E. Scuseria, and M. Ernzerhof, The Journal of Chemical Physics 118, 8207 (2003).
http://dx.doi.org/10.1063/1.1564060
53.
53. J. Paier, M. Marsman, and G. Kresse, Phys. Rev. B 78, 121201 (2008).
http://dx.doi.org/10.1103/PhysRevB.78.121201
54.
54. T. M. Henderson, J. Paier, and G. E. Scuseria, Phys. Status Solidi B. 248, 767 (2011).
http://dx.doi.org/10.1002/pssb.201046303
55.
55. A. V. Krukau, O. A. Vydrov, A. F. Izmaylov, and G. E. Scuseria, The Journal of Chemical Physics 125, 224106 (pages 5) (2006).
http://dx.doi.org/10.1063/1.2404663
56.
56. B. G. Janesko and G. E. Scuseria, The Journal of Chemical Physics 128, 084111 (pages 7) (2008).
http://dx.doi.org/10.1063/1.2831556
57.
57. A. Stroppa, K. Termentzidis, J. Paier, G. Kresse, and J. Hafner, Phys. Rev. B 76, 195440 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.195440
58.
58. J. Paier, M. Marsman, K. Hummer, G. Kresse, I. C. Gerber, and J. G. Ángyán, The Journal of Chemical Physics 124, 154709 (pages 13) (2006).
http://dx.doi.org/10.1063/1.2187006
59.
59. D. Koller, F. Tran, and P. Blaha, Phys. Rev. B 83, 195134 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.195134
60.
60. E. Engel and S. H. Vosko, Phys. Rev. B 47, 13164 (1993).
http://dx.doi.org/10.1103/PhysRevB.47.13164
61.
61. F. Tran and P. Blaha, Phys. Rev. Lett. 102, 226401 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.226401
62.
62. P. Dufek, P. Blaha, and K. Schwarz, Phys. Rev. B 50, 7279 (1994).
http://dx.doi.org/10.1103/PhysRevB.50.7279
63.
63. D. J. Singh, Phys. Rev. B 81, 195217 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.195217
64.
64. M. Shishkin and G. Kresse, Phys. Rev. B 75, 235102 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.235102
65.
65. M. Shishkin and G. Kresse, Phys. Rev. B 74, 035101 (2006).
http://dx.doi.org/10.1103/PhysRevB.74.035101
66.
66. B. N. M. Harmon, W. Weber, and D. R. Hamann, Phys. Rev. B 25, 1109 (1982).
http://dx.doi.org/10.1103/PhysRevB.25.1109
67.
67. D. M. Ceperley and B. J. Alder, Phys. Rev. Letts. 45, 566 (1980).
http://dx.doi.org/10.1103/PhysRevLett.45.566
68.
68. S. H. Vosko, L. Wilk, and M. Nusair, Can. J. Phys. 58, 1200 (1980).
http://dx.doi.org/10.1139/p80-159
69.
69. J. P. Perdew and Y. Wang, Phys. Rev. B 45, A13244 (1992).
http://dx.doi.org/10.1103/PhysRevB.45.13244
70.
70. D. Bagayoko, G. L. Zhao, J. D. Fan, and J. T. Wang, J. Phys.: Condensed Matter 10, 5645 (1998).
http://dx.doi.org/10.1088/0953-8984/10/25/014
71.
71. G. L. Zhao, D. Bagayoko, and T. D. Williams, Phys. Rev. B 60, 1563 (1999).
http://dx.doi.org/10.1103/PhysRevB.60.1563
72.
72. C. Ekuma, Correct Density Functional Theory Description of Electronic Properties of CdS and Ferroelectric NaNO2 (M.Sc Thesis, Southern University, 2010).
73.
73. E. C. Ekuma, L. Franklin, J. T. Wang, G. L. Zhao, and D. Bagayoko, Can. J. Phys. 89, 319 (2011).
http://dx.doi.org/10.1139/P11-023
74.
74. C. E. Ekuma and D. Bagayoko, Jap. J. Appl. Phys. 50, 101103 (2011).
http://dx.doi.org/10.1143/JJAP.50.101103
75.
75. L. Franklin, G. L. Zhao, C. E. Ekuma, and D. Bagayoko, Can. J. Phys. (submitted).
76.
76. D. Bagayoko, L. Franklin, and G. L. Zhao, J. Appl. Phys. 96, 4297 (2004).
http://dx.doi.org/10.1063/1.1790064
77.
77. D. Bagayoko and L. Franklin, J. Appl. Phys. 97, 123708 (2005).
http://dx.doi.org/10.1063/1.1939069
78.
78. E. C. Ekuma, L. Franklin, J. T. Wang, G. L. Zhao, and D. Bagayoko, Physica B 406, 1477 (2011).
http://dx.doi.org/10.1016/j.physb.2011.01.051
79.
79. C. E. Ekuma, M. Jarrell, J. Moreno, and D. Bagayoko, AIP Advances 2, 012189 (2012).
http://dx.doi.org/10.1063/1.3700433
80.
80. H. Jin, G. L. Zhao, and D. Bagayoko, Phys. Rev. B 73, 245214 (2006).
http://dx.doi.org/10.1103/PhysRevB.73.245214
81.
81. G. L. Zhao, D. Bagayoko, and L. Yang, Phys. Rev. B 69, 245416 (2004).
http://dx.doi.org/10.1103/PhysRevB.69.245416
82.
82. W. Lengauer, J. Solid. State Chem. 76, 412 (1988).
http://dx.doi.org/10.1016/0022-4596(88)90236-8
83.
83. ICSD, Inorganic Crystal Structure Database (ICSD), National Institute of Standards and Technology (NIST) Release 2011/1, vol. 1 (NIST, 2011).
84.
84. D. Gall, I. Petrov, P. Desjardins, and J. E. Greene, Journal of Applied Physics 86, 5524 (1999).
http://dx.doi.org/10.1063/1.371555
85.
85. G. Lehmann and M. Taut, Phys. Status, Solidi (b) 54, 469 (1972).
http://dx.doi.org/10.1002/pssb.2220540211
86.
86. R. S. Mulliken, J. Am. Chem. Soc. 23, 1833 (1955).
http://dx.doi.org/10.1063/1.1740588
87.
87. F. Murnaghan, Proc. Nat. Acad. Sci. USA 30, 244 (1944).
http://dx.doi.org/10.1073/pnas.30.9.244
88.
88. F. Murnaghan, Finite Deformation of an Elastic Solid (Dover, New York, 1995).
89.
89. J. P. Perdew, K. Burke, and Y. Wang, Phys. Rev. B 54, 16533 (1996).
http://dx.doi.org/10.1103/PhysRevB.54.16533
90.
90. T. Shishidou, A. J. Freeman, and R. Asahi, Phys. Rev. B 64, 180401 (2001).
http://dx.doi.org/10.1103/PhysRevB.64.180401
91.
91. L. Burnstein, Phys. Rev. 93, 632 (1954).
http://dx.doi.org/10.1103/PhysRev.93.632
92.
92. T. S. Moss, Proc. Phys. Soc., London, Sect. B 67, 775 (1954).
http://dx.doi.org/10.1088/0370-1301/67/10/306
93.
93. D. Gall, M. Stadele, K. Jarrendahl, I. Petrov, P. Desjardins, R. T. Haasch, T. Y. Lee, and J. E. Greene, Phys. Rev. B 63, 125119 (2001).
http://dx.doi.org/10.1103/PhysRevB.63.125119
94.
94. W. A. Harrison and G. K. Straub, Phys. Rev. B 36, 2695 (1987).
http://dx.doi.org/10.1103/PhysRevB.36.2695
95.
95. J. Hayashi, I. Shirotani, K. Hirano, N. Ishimatsu, O. Shimomura, and T. Kikegawa, Solid State Commun. 125, 543 (2003).
http://dx.doi.org/10.1016/S0038-1098(02)00889-X
96.
96. J. O. Kim, J. D. Achenbach, P. B. Mirkarimi, M. Shinn, and S. A. Barnett, Journal of Applied Physics 72, 1805 (1992).
http://dx.doi.org/10.1063/1.351651
97.
97. J. Nye, Physical Properties of Crystals (Oxford University Press, London, 1957).
98.
98. K. W. Wojciechowski, Slow Dynamics in Complex Systems, AIP Conf. Proc. (American Institute of Physics, New York, 2004).
99.
99. B. D. Fulcher, X. Y. Cui, B. Delley, and C. Stampfl, Phys. Rev. B 85, 184106 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.184106
100.
100. E. Schreiber, O. L. Anderson, and N. Soga, Elastic Constants and their Measurement (McGraw-Hill, New York, 1973).
101.
101. W. Voigt, Lehrbuch der Kristallphysik (Teubner, Leipzig, 1928).
102.
102. A. Reuss and Z. Angew, Math. Mech. 9, 49 (1929).
http://dx.doi.org/10.1002/zamm.19290090104
103.
103. C. Zener, Elasticity and Anelasticity of Metals (University of Chicago, Chicago, 1948).
104.
104. S. I. Ranganathan and M. Ostoja-Starzewski, Phys. Rev. Lett. 101, 055504 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.055504
105.
105. M. A. Moram, Z. H. Barber, C. J. Humphreys, T. B. Joyce, and P. R. Chalker, Journal of Applied Physics 100, 023514 (pages 6) (2006).
http://dx.doi.org/10.1063/1.2217106
106.
106. J. A. Sue, Surf. Coat. Technol. 54/55, 154 (1992).
http://dx.doi.org/10.1016/S0257-8972(09)90043-3
107.
107. E. Török, A. J. Perry, L. Chollot, and W. D. Sproul, Thin Solid Films. 153, 37 (1987).
http://dx.doi.org/10.1016/0040-6090(87)90167-2
108.
108. K. Kim, V. Ozoliņš, and A. Zunger, Phys. Rev. B 60, R8449 (1999).
http://dx.doi.org/10.1103/PhysRevB.60.R8449
109.
109. K. Chen, L. R. Zhao, and J. S. Tse, Journal of Applied Physics 93, 2414 (2003).
http://dx.doi.org/10.1063/1.1540742
110.
110. D. G. Pettifor, Mater. Sci. Tech. 8, 345 (1992).
http://dx.doi.org/10.1179/026708392790170801
111.
111. D. Holec, M. Friák, J. Neugebauer, and P. H. Mayrhofer, Phys. Rev. B 85, 064101 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.064101
112.
112. D. Holec, R. Rachbauer, D. Kiener, P. D. Cherns, P. M. F. J. Costa, C. McAleese, P. H. Mayrhofer, and C. J. Humphreys, Phys. Rev. B 83, 165122 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.165122
http://aip.metastore.ingenta.com/content/aip/journal/adva/2/3/10.1063/1.4751260
Loading

Figures

Image of FIG. 1.

Click to view

FIG. 1.

(a) The calculated band structure of c-ScN as obtained with the optimal basis set (for the equilibrium lattice constant of 4.501 Å). The Fermi energy (EF) has been set equal to zero. (b) The calculated density of states (DOS) of c-ScN, as obtained from the bands shown in Fig. 1(a) . The Fermi energy (EF) has been set equal to zero. (c) The calculated partial density of states (pDOS) of c-ScN, as obtained from the bands shown in Fig. 1(a) . The Fermi energy (EF) has been set equal to zero.

Image of FIG. 2.

Click to view

FIG. 2.

(a) The calculated band structure of c-YN as obtained with the optimal basis set, at the equilibrium lattice constant of 4.827 Å. The Fermi energy (EF) has been set equal to zero. (b) The calculated density of states (DOS) of c-YN as obtained from the bands shown in Fig. 2(a) The Fermi energy (EF) has been set equal to zero. (c) The calculated partial density of states (pDOS) of c-YN, as obtained from the bands (one with solid line) shown in Fig. 2(a) . The Fermi energy (EF) has been set equal to zero.

Image of FIG. 3.

Click to view

FIG. 3.

(a) The contour plot of the electron charge density of ScN as obtained with the optimal basis set. (b) The contour plot of the electron charge density of YN as obtained with the optimal basis set. Δ n(r) is the variation of the electron charge density as a function of distance away from an atomic site. A logarithmic scale has been used.

Image of FIG. 4.

Click to view

FIG. 4.

The total energy (ET) per unit cell as a function of lattice constants (Å) for c-XN. Our calculated equilibrium lattice constant for ScN is 4.501 Å (exactly the same as the experimental value). The calculated equilibrium lattice constant of YN is 4.827 Å, 0.21 % smaller than the experimental value of 4.837 Å.

Tables

Generic image for table

Click to view

Table I.

Calculated equilibrium lattice parameters a o , stiffness, compliance and moduli constants, Young's modulus, Poisson ratio, shear modulus, and isotropic bulk modulus of ScN and YN.

Loading

Article metrics loading...

/content/aip/journal/adva/2/3/10.1063/1.4751260
2012-08-30
2014-04-25

Abstract

We utilized a simple, robust, first principle method, based on basis set optimization with the BZW-EF method, to study the electronic and related properties of transition metal mono-nitrides: ScN and YN. We solved the KS system of equations self-consistently within the linear combination of atomic orbitals (LCAO) formalism. It is shown that the band gap and low energy conduction bands, as well as elastic and structural properties, can be calculated with a reasonable accuracy when the LCAO formalism is used to obtain an optimal basis. Our calculated, indirect electronic band gap ( ) is 0.79 (LDA) and 0.88 eV (GGA) for ScN. In the case of YN, we predict an indirect band gap ( ) of 1.09 (LDA) and 1.15 eV (GGA). We also calculated the equilibrium lattice constants, the bulk moduli (B o ), effective masses, and elastic constants for both systems. Our calculated values are in excellent agreement with experimental ones where the latter are available.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/2/3/1.4751260.html;jsessionid=69uaf1702aqkd.x-aip-live-01?itemId=/content/aip/journal/adva/2/3/10.1063/1.4751260&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Electronic, structural, and elastic properties of metal nitrides XN (X = Sc, Y): A first principle study
http://aip.metastore.ingenta.com/content/aip/journal/adva/2/3/10.1063/1.4751260
10.1063/1.4751260
SEARCH_EXPAND_ITEM