Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. T. Irifune, A. Kurio, S. Sakamoto, T. Inoue, and H. Sumiya, Nature 421, 599 (2003).
2. V. Blank, M. Popov, G. Pivovarov, N. Lvova, K. Gogolinsky, and V. Reshetov, Diamond and Related Materials 7, 427 (1998).
3. C. A. Brookes and E. J. Brookes, Diamond and Related Materials 1, 13 (1993).
4. P. W. May, Phil. Trans. R. Soc. Lond. A 358, 473 (2000).
5. W. Kulisch, Springer Tracts on Modern Physics, Heidelberg Berlin (1999).
6. S. Y. Luoa, J. K. Kuo, B. Yeh, J. C. Sung, C. W. Dai, and T. J. Tsai, Materials Chemistry and Physics 72, 133 (2001).
7. Q. P. Wei, Z. M. Yu, L. Ma, D. F. Yin, and J. Yea, Applied Surface Sciience 256, 1322 (2009).
8. A. R. Konicek, D. S. Grierson, P. U. P. A. Gilbert, W. G. Sawyer, A. V. Sumant, and R. W. Carpick, Physical Review Letters 100, 235502 (2008).
9. F. R. Kloss, M. Najam-Ul-Haq, M. Rainer, R. Gassner, G. Lepperdinger, C. W. Huck, G. Bonn, F. Klauser, X. Liu, N. Memmel, E. Bertel, J. A. Garrido, and D. Steinmuller-Nethl, Journal of Nanoscience and Nanotechnology 7, 4581 (2007).
10. X. Liu, F. Klauser, N. Memmel, E. Bertel, T. Pichler, M. Knupfer, A. Kromka, and D. Steinmüller-Nethl, Diamond and Related Materials 16, 1463 (2007).
11. A. R. Krauss, O. Auciello, D. M. Gruen, A. Jayatissa, A. Sumant, J. Tucek, D. C. Mancini, N. Moldovan, A. Erdemir, D. Ersoy, M. N. Gardos, H. G. Busmann, E. M. Meyer, and M. Q. Ding, Diamond and Related Materials 10, 1952 (2001).
12. P. Hollman, O. Wanstrand, and S. Hogmark, Diamond and Related Materials 7, 1471 (1998).
13. L. Pastewka, S. Moser, P. Gumbsch, and M. Moseler, Nature Materials 10, 34 (2011).
14. S. E. Grillo, J. E. Field, and F. M. van Bouwelen, Journal of Physics D: Applied Physics 33, 985 (2000).
15. I. P. Hayward, Wear 215, 157 (1992).
16. D. S. Grierson and R. W. Carpick, Nanotoday 2, 12 (2007).
17. S. Yang, Z. He, Q. Li, D. Zhu, and J. Gong, Diamond and Related Materials 17, 2075 (2008).
18. W. Kulisch, C. Popov, T. Sasaki, L. Sirghi, H. Rauscher, F. Rossi, and J. P. Reithmaier, Physica Status Solidi 208, 70 (2011).
19. W. C. Oliver and G. M. Pharr, Journal of Materials Research 7, 1564 (1992).
20. R. Kuschnereil, P. Hess, D. Alberl, and W. Kulisch, Thin Solid Films 312, 66 (1998).
21. E. Salgueiredo, M. Amaral, M. A. Neto, A. J. S. Fernandes, F. J. Oliveira, and R. F. Silva, Vacuum 85, 701 (2011).
22. W. Kulisch, C. Popov, S. Boycheva, M. Jelinek, P. N. Gibson, and V. Vorlicek, Surface and Coatings Technology 200, 4731 (2006).
23. V. Janos, Surface Science 563, 183 (2004).
24. K. Panda, B. Sundaravel, B. K. Panigrahi, P. Magudapathy, D. N. Krishna, K. G. M. Nair, H. C. Chen, and I-N. Lin, Journal of Applied Physics 110, 44304 (2011).
25. D. C. Barbosa, F. A. Almeida, R. F. Silva, N. G. Ferreira, V. J. Trava-Airoldi, and E. J. Corat, Diamond and Related Materials 18, 1283 (2009).
26. A. Erdemir, G. R. Fenske, A. R. Krauss, D. M. Gruen, T. McCouley, and R. T. Csencsits, Surface and Coatings Technology 120–121, 565 (1999).
27. J. Lancaster and J. Pritchard, Journal of Physics D: Applied Physics 13, 1551 (1980).
28. N. Kumar, Neha Sharma, S. Dash, C. Popov, W. Kulisch, J. P. Reithmaier, G. Favaro, A. K. Tyagi, and Baldev Raj, Tribology International 44, 2042 (2011).
29. H. Zajdi, D. Paulmier, and J. Lepage, Applied Surface Science 44, 221 (1990).
30. R. Polini, M. Barletta, and G. Cristofanilli, Thin Solid Films 519, 1629 (2010).
31. B. Lichun, Z. Guangan, L. Zhibin, W. Zhiguo, W. Yunfeng, W. Liping, and Y. Pengxun, Journal of Applied Physics 110, 33521 (2011).
32. E. H. Lee, D. M. Hembree Jr., G. R. Rao, and L. K. Mansur, Physical Review B 48, 15540 (1993).
33. A. R. Konicek, D. S. Grierson, A. V. Sumant, T. A. Friedmann, J. P. Sullivan, P. U. P. A. Gilbert, W. G. Sawyer, and R. W. Carpick, Physical Review B 85, 155448 (2012).

Data & Media loading...


Article metrics loading...



The dependence of the structural and morphological properties of nanocrystallinediamondfilms grown by hot filament chemical vapor deposition on the substrate temperature was studied. Friction coefficients of these films were measured and found to vary from high to ultra low, depending on the chemical nature of the films i.e., sp2 and sp3 phase fractions. For all films, the friction coefficient was found to decrease with increase in sp2/sp3 phase fraction. The wear rate follows the trend of the friction coefficient and was likewise found to depend on the structural and morphological properties of the films. For all the films, the friction coefficient is found to decrease with normal load which is ascribed to sliding induced surface amorphization/graphitization.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd