1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Tribological properties of nanocrystalline diamond films deposited by hot filament chemical vapor deposition
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/2/3/10.1063/1.4751272
1.
1. T. Irifune, A. Kurio, S. Sakamoto, T. Inoue, and H. Sumiya, Nature 421, 599 (2003).
http://dx.doi.org/10.1038/421599b
2.
2. V. Blank, M. Popov, G. Pivovarov, N. Lvova, K. Gogolinsky, and V. Reshetov, Diamond and Related Materials 7, 427 (1998).
http://dx.doi.org/10.1016/S0925-9635(97)00232-X
3.
3. C. A. Brookes and E. J. Brookes, Diamond and Related Materials 1, 13 (1993).
http://dx.doi.org/10.1016/0925-9635(91)90006-V
4.
4. P. W. May, Phil. Trans. R. Soc. Lond. A 358, 473 (2000).
http://dx.doi.org/10.1098/rsta.2000.0542
5.
5. W. Kulisch, Springer Tracts on Modern Physics, Heidelberg Berlin (1999).
6.
6. S. Y. Luoa, J. K. Kuo, B. Yeh, J. C. Sung, C. W. Dai, and T. J. Tsai, Materials Chemistry and Physics 72, 133 (2001).
http://dx.doi.org/10.1016/S0254-0584(01)00422-9
7.
7. Q. P. Wei, Z. M. Yu, L. Ma, D. F. Yin, and J. Yea, Applied Surface Sciience 256, 1322 (2009).
http://dx.doi.org/10.1016/j.apsusc.2009.06.091
8.
8. A. R. Konicek, D. S. Grierson, P. U. P. A. Gilbert, W. G. Sawyer, A. V. Sumant, and R. W. Carpick, Physical Review Letters 100, 235502 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.235502
9.
9. F. R. Kloss, M. Najam-Ul-Haq, M. Rainer, R. Gassner, G. Lepperdinger, C. W. Huck, G. Bonn, F. Klauser, X. Liu, N. Memmel, E. Bertel, J. A. Garrido, and D. Steinmuller-Nethl, Journal of Nanoscience and Nanotechnology 7, 4581 (2007).
10.
10. X. Liu, F. Klauser, N. Memmel, E. Bertel, T. Pichler, M. Knupfer, A. Kromka, and D. Steinmüller-Nethl, Diamond and Related Materials 16, 1463 (2007).
http://dx.doi.org/10.1016/j.diamond.2006.12.015
11.
11. A. R. Krauss, O. Auciello, D. M. Gruen, A. Jayatissa, A. Sumant, J. Tucek, D. C. Mancini, N. Moldovan, A. Erdemir, D. Ersoy, M. N. Gardos, H. G. Busmann, E. M. Meyer, and M. Q. Ding, Diamond and Related Materials 10, 1952 (2001).
http://dx.doi.org/10.1016/S0925-9635(01)00385-5
12.
12. P. Hollman, O. Wanstrand, and S. Hogmark, Diamond and Related Materials 7, 1471 (1998).
http://dx.doi.org/10.1016/S0925-9635(98)00215-5
13.
13. L. Pastewka, S. Moser, P. Gumbsch, and M. Moseler, Nature Materials 10, 34 (2011).
http://dx.doi.org/10.1038/nmat2902
14.
14. S. E. Grillo, J. E. Field, and F. M. van Bouwelen, Journal of Physics D: Applied Physics 33, 985 (2000).
http://dx.doi.org/10.1088/0022-3727/33/8/315
15.
15. I. P. Hayward, Wear 215, 157 (1992).
16.
16. D. S. Grierson and R. W. Carpick, Nanotoday 2, 12 (2007).
http://dx.doi.org/10.1016/S1748-0132(07)70139-1
17.
17. S. Yang, Z. He, Q. Li, D. Zhu, and J. Gong, Diamond and Related Materials 17, 2075 (2008).
http://dx.doi.org/10.1016/j.diamond.2008.07.005
18.
18. W. Kulisch, C. Popov, T. Sasaki, L. Sirghi, H. Rauscher, F. Rossi, and J. P. Reithmaier, Physica Status Solidi 208, 70 (2011).
http://dx.doi.org/10.1002/pssa.201026066
19.
19. W. C. Oliver and G. M. Pharr, Journal of Materials Research 7, 1564 (1992).
http://dx.doi.org/10.1557/JMR.1992.1564
20.
20. R. Kuschnereil, P. Hess, D. Alberl, and W. Kulisch, Thin Solid Films 312, 66 (1998).
http://dx.doi.org/10.1016/S0040-6090(97)00582-8
21.
21. E. Salgueiredo, M. Amaral, M. A. Neto, A. J. S. Fernandes, F. J. Oliveira, and R. F. Silva, Vacuum 85, 701 (2011).
http://dx.doi.org/10.1016/j.vacuum.2010.10.010
22.
22. W. Kulisch, C. Popov, S. Boycheva, M. Jelinek, P. N. Gibson, and V. Vorlicek, Surface and Coatings Technology 200, 4731 (2006).
http://dx.doi.org/10.1016/j.surfcoat.2005.04.007
23.
23. V. Janos, Surface Science 563, 183 (2004).
http://dx.doi.org/10.1016/j.susc.2004.06.154
24.
24. K. Panda, B. Sundaravel, B. K. Panigrahi, P. Magudapathy, D. N. Krishna, K. G. M. Nair, H. C. Chen, and I-N. Lin, Journal of Applied Physics 110, 44304 (2011).
http://dx.doi.org/10.1063/1.3622517
25.
25. D. C. Barbosa, F. A. Almeida, R. F. Silva, N. G. Ferreira, V. J. Trava-Airoldi, and E. J. Corat, Diamond and Related Materials 18, 1283 (2009).
http://dx.doi.org/10.1016/j.diamond.2009.05.002
26.
26. A. Erdemir, G. R. Fenske, A. R. Krauss, D. M. Gruen, T. McCouley, and R. T. Csencsits, Surface and Coatings Technology 120–121, 565 (1999).
http://dx.doi.org/10.1016/S0257-8972(99)00443-0
27.
27. J. Lancaster and J. Pritchard, Journal of Physics D: Applied Physics 13, 1551 (1980).
http://dx.doi.org/10.1088/0022-3727/13/8/025
28.
28. N. Kumar, Neha Sharma, S. Dash, C. Popov, W. Kulisch, J. P. Reithmaier, G. Favaro, A. K. Tyagi, and Baldev Raj, Tribology International 44, 2042 (2011).
http://dx.doi.org/10.1016/j.triboint.2011.09.003
29.
29. H. Zajdi, D. Paulmier, and J. Lepage, Applied Surface Science 44, 221 (1990).
http://dx.doi.org/10.1016/0169-4332(90)90053-3
30.
30. R. Polini, M. Barletta, and G. Cristofanilli, Thin Solid Films 519, 1629 (2010).
http://dx.doi.org/10.1016/j.tsf.2010.07.128
31.
31. B. Lichun, Z. Guangan, L. Zhibin, W. Zhiguo, W. Yunfeng, W. Liping, and Y. Pengxun, Journal of Applied Physics 110, 33521 (2011).
http://dx.doi.org/10.1063/1.3619798
32.
32. E. H. Lee, D. M. Hembree Jr., G. R. Rao, and L. K. Mansur, Physical Review B 48, 15540 (1993).
http://dx.doi.org/10.1103/PhysRevB.48.15540
33.
33. A. R. Konicek, D. S. Grierson, A. V. Sumant, T. A. Friedmann, J. P. Sullivan, P. U. P. A. Gilbert, W. G. Sawyer, and R. W. Carpick, Physical Review B 85, 155448 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.155448
http://aip.metastore.ingenta.com/content/aip/journal/adva/2/3/10.1063/1.4751272
Loading

Figures

Image of FIG. 1.

Click to view

FIG. 1.

Surface morphology revealed by FESEM images of films F1 (870°C), F2 (700°C) and F3 (600°C) films.

Image of FIG. 2.

Click to view

FIG. 2.

Cross-section FESEM images of films F1 (870°C), F2 (700°C) and F3 (600°C).

Image of FIG. 3.

Click to view

FIG. 3.

Load-displacement curves of nanoindentations of films F1 (870°C), F2 (700°C) and F3 (600°C).

Image of FIG. 4.

Click to view

FIG. 4.

XPS C 1s core-level spectra of films F1 (870°C), F2 (700°C) and F3 (600°C).

Image of FIG. 5.

Click to view

FIG. 5.

I–V measurements of films F1, F2 and F3.

Image of FIG. 6.

Click to view

FIG. 6.

STM and corresponding CITS images of films F1 (870°C), F2 (700°C) and F3 (600°C) revealing the enhanced surface conductivity of F3 in comparison with films F1 and F2.

Image of FIG. 7.

Click to view

FIG. 7.

Typical I-V curves of film F3 obtained from the grains and grain boundaries. Three curves were measured on grains “g” and grain boundaries “gb” at locations marked with arrows in Figure 6.

Image of FIG. 8.

Click to view

FIG. 8.

Friction coefficients of films F1 (870°C), F2 (700°C) and F3 (600°C).

Image of FIG. 9.

Click to view

FIG. 9.

Comparison of (a) friction coefficients and (b) wear rates at various normal loads plotted with error bars.

Image of FIG. 10.

Click to view

FIG. 10.

Surface roughness and wear track roughness of films F1, F2 and F3.

Image of FIG. 11.

Click to view

FIG. 11.

Micro-Raman spectra from the surface and the wear tracks of the films F1, F2 and F3 obtained at constant load of 3 N.

Image of FIG. 12.

Click to view

FIG. 12.

Micro-Raman spectra from the steel balls after sliding on films F1, F2 and F3 at constant load of 3 N.

Image of FIG. 13.

Click to view

FIG. 13.

Micro-Raman spectra of wear tracks formed on film F2 at normal loads of 1, 3 and 6 N.

Image of FIG. 14.

Click to view

FIG. 14.

Optical images of the wear tracks obtained at 3 N normal loads on F1, F2 and F3 specimen and insets showing the corresponding microscopic images of worn balls.

Tables

Generic image for table

Click to view

Table I.

Physical and morphological description of diamond films.

Generic image for table

Click to view

Table II.

Friction coefficient and wear rate of F1, F2 and F3 films as a function of the normal load.

Loading

Article metrics loading...

/content/aip/journal/adva/2/3/10.1063/1.4751272
2012-08-30
2014-04-24

Abstract

The dependence of the structural and morphological properties of nanocrystallinediamondfilms grown by hot filament chemical vapor deposition on the substrate temperature was studied. Friction coefficients of these films were measured and found to vary from high to ultra low, depending on the chemical nature of the films i.e., sp2 and sp3 phase fractions. For all films, the friction coefficient was found to decrease with increase in sp2/sp3 phase fraction. The wear rate follows the trend of the friction coefficient and was likewise found to depend on the structural and morphological properties of the films. For all the films, the friction coefficient is found to decrease with normal load which is ascribed to sliding induced surface amorphization/graphitization.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/2/3/1.4751272.html;jsessionid=9u31i9oddqqr0.x-aip-live-03?itemId=/content/aip/journal/adva/2/3/10.1063/1.4751272&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Tribological properties of nanocrystalline diamond films deposited by hot filament chemical vapor deposition
http://aip.metastore.ingenta.com/content/aip/journal/adva/2/3/10.1063/1.4751272
10.1063/1.4751272
SEARCH_EXPAND_ITEM