1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Dye-assisted dispersion of single-walled carbon nanotubes for solution fabrication of NO2 sensors
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/2/3/10.1063/1.4752760
1.
1. P. Avouris, Z. Chen, and V. Perebeinos, Nature, 605 (2007).
2.
2. C-S. Woo, C-H. Lim, C-W. Cho, B. Park, H. Ju, D-H. Min, C-J. Lee, and S-B. Lee, Microelectronic Engineering 84, 1610 (2007).
http://dx.doi.org/10.1016/j.mee.2007.01.162
3.
3. R. A. Hatton, A. J. Miller, and S. R. P. Silva, J. Mater. Chem. 18, 1183 (2008).
http://dx.doi.org/10.1039/b713527k
4.
4. R. Larciprete, L. Pataccia, S. Lizzit, and A. Goldoni, J. Phys. Chem. C 111, 12169 (2007).
http://dx.doi.org/10.1021/jp067673+
5.
5. M. Penza, G. Cassano, R. Rossi, A. Rizzo, M. A. Signore, M. Alvisi, L. Lisi, E. Serra, and R. Giorgi, Appl. Phys. Lett. 90, 103101 (2007).
http://dx.doi.org/10.1063/1.2456258
6.
6. A. L. Ndiaye, C. Varenne, P. Bonne, E. Petit, L. Spinelle, J. Brunet, A. Pauly, and B. Lauron, Thin Solid Films 520, 4465 (2012).
http://dx.doi.org/10.1016/j.tsf.2012.02.071
7.
7. E. Mendoza, J. Rodriguez, Y. Li, Y. Q. Zhu, C. H. Poa, S. J. Henley, A. Romano-Rodriguez, J. R. Morante, and S. Ravi P. Silva, Carbon 45, 83 (2007).
http://dx.doi.org/10.1016/j.carbon.2006.08.001
8.
8. K. Okano and T. Totsuka, New Phytol. 102, 551 (1968).
http://dx.doi.org/10.1111/j.1469-8137.1986.tb00831.x
9.
9. W. Shi and J. K. Johnson, Phys. Rev. Lett. 91, 015504 (2003).
http://dx.doi.org/10.1103/PhysRevLett.91.015504
10.
10. Y. Zhao and J. F. Stoddart, Acc. Chem. Res. 42, 1161 (2009).
http://dx.doi.org/10.1021/ar900056z
11.
11. O. Matarredona, H. Rhoads, Z. Li, J. H. Harwell, L. Balzano, and D. E. Resasco, J. Phys. Chem. 107, 13357 (2003).
http://dx.doi.org/10.1021/jp0365099
12.
12. H. Geng, D. S. Lee, K. K. Kim, G. H. Han, H. K. Park, and Y. H. Lee, Chem. Phys. Lett. 455, 275 (2008).
http://dx.doi.org/10.1016/j.cplett.2008.02.102
13.
13. W. H. Duan, Q. Wang, and F. Collins, Chem. Science 2, 1407 (2011).
http://dx.doi.org/10.1039/c0sc00616e
14.
14. D. C. Lee, F. V. Mikulec and B. A. Korgel, J. Am. Chem. Soc. 126, 4951 (2004).
http://dx.doi.org/10.1021/ja031522s
15.
15. X. Tu, S. Manohar, A. Jagota, and M. Zheng, Nature 460, 250 (2009).
http://dx.doi.org/10.1038/nature08116
16.
16. S. Bhattacharyya, C. Sinturel, J. P. Salvetat, and M.-L. Saboungi, Apl. Phys. Lett. 86, 113104 (2005).
http://dx.doi.org/10.1063/1.1883725
17.
17. M. J. Ganter, B. J. Landi, J. J. Worman, C. M. Schauerman, C. D. Cress, and R. P. Raffaelle, Mater. Chem. Phys. 116, 235 (2009).
http://dx.doi.org/10.1016/j.matchemphys.2009.03.020
18.
18. J. L. Bahr, E. T. Mickelson, M. J. Bronikowski, R. E. Smalley, and J. M. Tour, Chem. Commun. 2, 193 (2001).
http://dx.doi.org/10.1039/b008042j
19.
19. A. T. C. Johnson, C. Staii, M. Chen, S. Khamis, R. Johnson, M. L. Klein, and A. Gelperin, Semicond. Sci. Technol. 21, 17 (2006).
http://dx.doi.org/10.1088/0268-1242/21/11/S03
20.
20. L. Hu, D. S. Hecht, and G. Gruner, Nano Lett. 4, 2513 (2004).
http://dx.doi.org/10.1021/nl048435y
21.
21. T. G. Hedderman, S. M. Keogh, G. Chambers, and H. J. Byrne, J. Phys. Chem. 108, 18860 (2004).
http://dx.doi.org/10.1021/jp049148l
22.
22. R. H. Baughman, A. A. Zakhidov, and W. A. Heer, Science 297, 787 (2002).
http://dx.doi.org/10.1126/science.1060928
23.
23. M. L. Glowka, D. Martynowski, and K. Kozlowska, J. Mol. Struct. 474, 81 (1999).
http://dx.doi.org/10.1016/S0022-2860(98)00562-6
24.
24. R. R. Johnson, A. T. C. Johnson, and M. L. Klein, Nano Lett. 8, 6975 (2008).
http://dx.doi.org/10.1021/nl071909j
25.
25. A. Jorio, R. Satio, J. H. Hafner, C. M. Lieber, M. Hunter, T. McClure, G. Dresselhaus, and M. S. Dresselhaus,
26.
26. H. E. Unalan, G. Fanchini, A. Kanwal, A. D. Pasquier, and M. Chhowalla, Nano. Lett. 6, 677 (2006).
http://dx.doi.org/10.1021/nl052406l
27.
27. L. Valentini, F. Mercuri, I. Armentano, C. Cantalini, S. Picozzi, L. Lozzi, S. Santucci, A. Sgamellotti, and J. M. Kenny, Chem. Phys. Lett. 387, 356361 (2004).
http://dx.doi.org/10.1016/j.cplett.2004.02.038
http://aip.metastore.ingenta.com/content/aip/journal/adva/2/3/10.1063/1.4752760
Loading
/content/aip/journal/adva/2/3/10.1063/1.4752760
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/2/3/10.1063/1.4752760
2012-09-07
2014-08-22

Abstract

Direct golden orange dye molecules were used as a dispersing agent to produce suspensions of single-walled carbon nanotubes(SWCNTs) in water. Uniform, thin film networks were fabricated by vacuum filtration using different concentrations of SWCNT and transferred subsequently to glass substrates. The dispersion efficiency was compared to other surfactants. Measurement of the sheet resistance as a function of SWCNT concentration showed a transition from 2D percolation to 3D conduction behaviour when the concentration of SWCNTs exceeded 0.001 mg/mL. The electrical response to NO2 gas exposure was investigated as a function of temperature and an optimum response was observed at 200°C.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/2/3/1.4752760.html;jsessionid=1j414el7gxmbq.x-aip-live-02?itemId=/content/aip/journal/adva/2/3/10.1063/1.4752760&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Dye-assisted dispersion of single-walled carbon nanotubes for solution fabrication of NO2 sensors
http://aip.metastore.ingenta.com/content/aip/journal/adva/2/3/10.1063/1.4752760
10.1063/1.4752760
SEARCH_EXPAND_ITEM