1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Pronounced ductility in CuZrAl ternary bulk metallic glass composites with optimized microstructure through melt adjustment
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/2/3/10.1063/1.4754853
1.
1. W. L. Johnson, MRS Bull. 24, 42 (1999).
2.
2. G. Kumar, A. Desai, and J. Schroers, Adv. Mater. 23, 461 (2011).
http://dx.doi.org/10.1002/adma.201002148
3.
3. M. F. Ashby and A. L. Greer, Scripta Mater. 54, 321 (2006).
http://dx.doi.org/10.1016/j.scriptamat.2005.09.051
4.
4. Z. Q. Liu, R. Li, G. Wang, S. J. Wu, X. Y. Lu, and T. Zhang, Acta Mater. 59, 7416 (2011).
http://dx.doi.org/10.1016/j.actamat.2011.08.002
5.
5. Y. Li, S. J. Poon, G. J. Shiflet, J. Xu, D. H. Kim, and J. F. Löffler, MRS Bull. 32, 624 (2007).
http://dx.doi.org/10.1557/mrs2007.123
6.
6. C. P. Kim, Y. S. Oh, S. Lee, and N. J. Kim, Scripta Mater. 65, 304 (2011).
http://dx.doi.org/10.1016/j.scriptamat.2011.04.037
7.
7. C. C. Hays, C. P. Kim, and W. L. Johnson, Phys. Rev. Lett. 84, 2901 (2000).
http://dx.doi.org/10.1103/PhysRevLett.84.2901
8.
8. D. C. Hoffmann, J. Y. Suh, A. Wiest, G. Duan, M. L. Lind, M. D. Demetriou, and W. L. Johnson, Nature 451, 1085 (2008).
http://dx.doi.org/10.1038/nature06598
9.
9. S. Pauly, S. Gorantla, G. Wang, U. Kühn, and J. Eckert, Nat. Mater. 9, 473 (2010).
http://dx.doi.org/10.1038/nmat2767
10.
10. Y. Wu, Y. H. Xiao, G. L. Chen, C. T. Liu, and Z. P. Lu, Adv. Mater. 22, 2770 (2010).
http://dx.doi.org/10.1002/adma.201000482
11.
11. D. C. Hofmann, Science 329, 1294 (2010).
http://dx.doi.org/10.1126/science.1193522
12.
12. Y. Wu, H. Wang, H. H. Wu, Z. Y. Zhang, X. D. Hui, G. L. Chen, D. Ma, X. L. Wang, and Z. P. Lu, Acta Mater. 59, 2928 (2011).
http://dx.doi.org/10.1016/j.actamat.2011.01.029
13.
13. S. Pauly, J. Bednarcik, U. Kühn, and J. Eckert, Scripta Mater. 63, 336 (2010).
http://dx.doi.org/10.1016/j.scriptamat.2010.04.034
14.
14. S. Pauly, G. Liu, G. Wang, J. Das, K. B. Kim, U. Kühn, D. H. Kim, and J. Eckert, Appl. Phys. Lett. 95, 101906 (2009).
http://dx.doi.org/10.1063/1.3222973
15.
15. S. Pauly, G. Liu, G. Wang, U. Kühn, N. Mattern, and J. Eckert, Acta Mater. 57, 5445 (2009).
http://dx.doi.org/10.1016/j.actamat.2009.07.042
16.
16. Z. Q. Liu, R. Li, H. Wang, and T. Zhang, J. Alloys Compd. 509, 5033 (2011).
http://dx.doi.org/10.1016/j.jallcom.2011.01.121
17.
17. Z. Q. Liu, R. Li, G. Liu, W. H. Su, H. Wang, Y. Li, M. J. Shi, X. K. Luo, G. J. Wu, and T. Zhang, Acta Mater. 60, 3128 (2012).
http://dx.doi.org/10.1016/j.actamat.2012.02.017
18.
18. Y. J. Kim, R. Busch, W. L. Johnson, A. J. Rulison, and W. K. Rhim, Appl. Phys. Lett. 65, 2136 (1994).
http://dx.doi.org/10.1063/1.112768
19.
19. L. Zhang, Y. S. Wu, X. F. Bian, S. Wu, and H. Li, J. Mater. Sci. Lett. 18, 1977 (1999).
http://dx.doi.org/10.1023/A:1006625614710
20.
20. J. Schroers and W. L. Johnson, J. Appl. Phys. 88, 44 (2000).
http://dx.doi.org/10.1063/1.373621
21.
21. S. Mukherjee, Z. Zhou, J. Schroers, W. L. Johnson, and W. K. Rhim, Appl. Phys. Lett. 84, 5010 (2004).
http://dx.doi.org/10.1063/1.1763219
22.
22. A. J. Drehman, A. L. Greer, and D. Turnbull, Appl. Phys. Lett. 41, 716 (1982).
http://dx.doi.org/10.1063/1.93645
23.
23. J. J. Wall, C. T. Liu, W. K. Rhim, J. J. Z. Li, P. K. Liaw, H. Choo, and W. L. Johnson, Appl. Phys. Lett. 92, 244106 (2008).
http://dx.doi.org/10.1063/1.2948861
24.
24. V. Manov, P. Popel, E. Brook-Levinson, V. Molokanov, M. Calvo-Dahlborg, U. Dahlborg, V. Sidorov, L. Son, and Y. Tarakanov, Mater. Sci. Eng. A 304, 54 (2001).
http://dx.doi.org/10.1016/S0921-5093(00)01433-7
25.
25. A. Gebert, J. Eckert, and L. Schultz, Acta Mater. 46, 5475 (1998).
http://dx.doi.org/10.1016/S1359-6454(98)00187-6
26.
26. X. H. Lin, W. L. Johnson, and W. K. Rhim, Mater. Trans. JIM 38, 473 (1997).
27.
27. L. Q. Xing and D. M. Herlach, J. Mater. Sci. 34, 3795 (1999).
http://dx.doi.org/10.1023/A:1004648732247
28.
28. Y. X. Wang, H. Yang, G. Lim, and Y. Li, Scripta Mater. 62, 282 (2012).
29.
29. J. Schroers and W. L. Johnson, Appl. Phys. Lett. 76, 234 (2000).
http://dx.doi.org/10.1063/1.126340
http://aip.metastore.ingenta.com/content/aip/journal/adva/2/3/10.1063/1.4754853
Loading

Figures

Image of FIG. 1.

Click to view

FIG. 1.

SEM images of the as-cast 3 mm diameter BMG composites for the alloys remelted for different times. The central region used for the tensile tests is marked by a dashed circle for each sample.

Image of FIG. 2.

Click to view

FIG. 2.

True tensile stress-strain curves of the BMG composites for the alloys remelted for different times.

Image of FIG. 3.

Click to view

FIG. 3.

Morphologies of the lateral (a, c, d) and fracture (b) surfaces of a tensile fractured sample for the alloy remelted for 12 times.

Image of FIG. 4.

Click to view

FIG. 4.

Variation in the measured oxygen and nitrogen contents with remelting time (a) and schematic illustration of time-temperature-transformation diagrams for the alloys remelted for different times (b) with the isothermal annealing curves at 708 K shown in the inset.

Tables

Generic image for table

Click to view

Table I.

Thermal parameters, incubation times at different temperatures, and oxygen and nitrogen contents for the alloys remelted for different times. T g is the glass transition temperature; T x is the onset crystallization temperature; T m is the melting temperature; T l and T s denote the liquidus temperature and onset solidification temperature, respectively.

Loading

Article metrics loading...

/content/aip/journal/adva/2/3/10.1063/1.4754853
2012-09-19
2014-04-17

Abstract

Microstructures and mechanical properties of as-cast Cu47.5Zr47.5Al5 bulk metallic glasscomposites are optimized by appropriate remelting treatment of master alloys. With increasing remelting time, the alloys exhibit homogenized size and distribution of in situ formed B2 CuZr crystals. Pronounced tensile ductility of ∼13.6% and work-hardening ability are obtained for the composite with optimized microstructure. The effect of remelting treatment is attributed to the suppressed heterogeneous nucleation and growth of the crystalline phase from undercooled liquid, which may originate from the dissolution of oxides and nitrides as well as from the micro-scale homogenization of the melt.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/2/3/1.4754853.html;jsessionid=1g4uj2mu87hms.x-aip-live-01?itemId=/content/aip/journal/adva/2/3/10.1063/1.4754853&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Pronounced ductility in CuZrAl ternary bulk metallic glass composites with optimized microstructure through melt adjustment
http://aip.metastore.ingenta.com/content/aip/journal/adva/2/3/10.1063/1.4754853
10.1063/1.4754853
SEARCH_EXPAND_ITEM