1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
oa
Carbonic acid revisited: Vibrational spectra, energetics and the possibility of detecting an elusive molecule
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/2/3/10.1063/1.4755786
1.
1. Z. S. Fisher, M. C. Maupin, M. Budayova-Spano, L. Govindasamy, C. Tu, M. Agbandje-McKenna, D. N. Silverman, G. A. Voth, and R. McKenna, Biochemistry 46(11), 2930 (2007);
http://dx.doi.org/10.1021/bi062066y
1.S. Thoms, Journal of Theoretical Biology 215(4), 399 (2002).
http://dx.doi.org/10.1006/jtbi.2002.2528
2.
2. D. M. Kern, Journal of Chemical Education 37(1), 14 (1960).
http://dx.doi.org/10.1021/ed037p14
3.
3. R. A. Feely, C. L. Sabine, K. Lee, W. Berelson, J. Kleypas, V. J. Fabry, and F. J. Millero, Science 305(5682), 362 (2004);
http://dx.doi.org/10.1126/science.1097329
3.C. L. Sabine, R. A. Feely, N. Gruber, R. M. Key, K. Lee, J. L. Bullister, R. Wanninkhof, C. S. Wong, D. W. R. Wallace, B. Tilbrook, et al., Science 305(5682), 367 (2004);
3.J. C. Orr, V. J. Fabry, O. Aumont, L. Bopp, S. C. Doney, R. A. Feely, A. Gnanadesikan, N. Gruber, A. Ishida, F. Joos, et al., Nature 437(7059), 681 (2005).
http://dx.doi.org/10.1038/nature04095
4.
4. H. A. Al-Hosney and V. H. Grassian, Journal of the American Chemical Society 126(26), 8068 (2004);
http://dx.doi.org/10.1021/ja0490774
4.H. A. Al-Hosney and V. H. Grassian, Physical Chemistry Chemical Physics 7(6), 1266 (2005);
http://dx.doi.org/10.1039/b417872f
4.H. A. Al-Hosney, S. Carlos-Cuellar, J. Baltrusaitis, and V. H. Grassian, Physical Chemistry Chemical Physics 7(20), 3587 (2005).
http://dx.doi.org/10.1039/b510112c
5.
5. W. Hage, K. R. Liedl, A. Hallbrucker, and E. Mayer, Science 279, 1332 (1998).
http://dx.doi.org/10.1126/science.279.5355.1332
6.
6. W. Zheng and R. I. Kaiser, Chemical Physics Letters 450(1–3), 55 (2007).
http://dx.doi.org/10.1016/j.cplett.2007.10.094
7.
7. J. K. Terlouw and H. Schwarz, Angewandte Chemie 99(9), 829 (1987).
http://dx.doi.org/10.1002/ange.19870990904
8.
8. T. Mori, K. Suma, Y. Sumiyoshi, and Y. Endo, The Journal of Chemical Physics 130, 2043081 (2009).
http://dx.doi.org/10.1063/1.3141405
9.
9. J. Bernard, M. Seidl, I. Kohl, K. R. Liedl, E. Mayer, O. Galvez, H. Grothe, and T. Loerting, Angewandte Chemie International Edition 50, 1939 (2011).
http://dx.doi.org/10.1002/anie.201004729
10.
10. C. A. Wight and A. I. Boldyrev, Journal of Chemical Physics 99, 12125 (1995).
http://dx.doi.org/10.1021/j100032a012
11.
11. K. R. Liedl, S. Sekusak, and E. Mayer, Journal of the American Chemical Society 119, 3782 (1997).
http://dx.doi.org/10.1021/ja961802q
12.
12. J. A. Tossell, Inorganic Chemistry 45, 5961 (2006).
http://dx.doi.org/10.1021/ic060459f
13.
13. J. Murillo, J. David, and A. Restrepo, Physical Chemistry Chemical Physics 12, 10963 (2010).
http://dx.doi.org/10.1039/c003520c
14.
14. Y.-J. Wu, R. C. Y. Wu, and M.-C. Liang, Icarus 214, 228 (2011).
http://dx.doi.org/10.1016/j.icarus.2011.05.009
15.
15. A. Becke, Journal of Chemical Physics 98(7), 5648 (1993).
http://dx.doi.org/10.1063/1.464913
16.
16. C. Lee, W. Yang, and R. G. Parr, Physical Review B: Condensed Matter and Materials Physics 37, 785 (1988).
http://dx.doi.org/10.1103/PhysRevB.37.785
17.
17. J. Chai and M. Head-Gordon, Physical Chemistry Chemical Physics 10, 6615 (2008).
http://dx.doi.org/10.1039/b810189b
18.
18. C. Moller and M. S. Plesset, Physical Review 46, 618 (1934);
18.M. Head-Gordon, J. A. Pople, and M. J. Frisch, Chemical Physics Letters 153, 503 (1988).
http://dx.doi.org/10.1016/0009-2614(88)85250-3
19.
19. T. H. Dunning Jr., Journal of Chemical Physics 90, 1007 (1989);
http://dx.doi.org/10.1063/1.456153
19.R. A. Kendall, T. H. Dunning Jr., and J. R. Harrison, Journal of Chemical Physics 96, 6796 (1992);
http://dx.doi.org/10.1063/1.462569
19.K. A. Peterson, D. E. Woon, and T. H. Dunning Jr., Journal of Chemical Physics 100, 7410 (1994);
http://dx.doi.org/10.1063/1.466884
19.E. R. Davidson, Chemical Physics Letters 260, 514 (1996).
http://dx.doi.org/10.1016/0009-2614(96)00917-7
20.
20. W. H. Miller, N. C. Handy, and J. E. Adams, Journal of Chemical Physics 72(1), 99 (1980).
http://dx.doi.org/10.1063/1.438959
21.
21. V. Barone and C. Minichino, Journal of Molecular Structure 330, 365 (1995).
http://dx.doi.org/10.1016/0166-1280(94)03862-F
22.
22. V. Barone, The Journal of Chemical Physics 122, 0141081 (2005).
http://dx.doi.org/10.1063/1.1824881
23.
23. K. Hermansson, M. M. Probst, G. Gajewski, and P. D. Mitev, The Journal of Chemical Physics 131, 2445171 (2009).
http://dx.doi.org/10.1063/1.3266507
24.
24. J. C. Light, I. P. Hamilton, and J. V. Lill, The Journal of Chemical Physics 82(3), 1400 (1985);
http://dx.doi.org/10.1063/1.448462
24.R. Dawes and T. Carrington Jr., Journal of Chemical Physics 121(2), 726 (2004).
http://dx.doi.org/10.1063/1.1758941
25.
25. I. Wolfram Research, Mathematica Edition: Version 8.0 (Wolfram Research, Inc., Champaign, Illinois, 2010).
26.
26. J. A. Pople, M. Head-Gordon, D. J. Fox, K. Raghavachari, and L. A. Curtiss, Journal of Chemical Physics 90, 5622 (1989);
http://dx.doi.org/10.1063/1.456415
26.L. A. Curtiss, K. Raghavachari, G. W. Trucks, and J. A. Pople, Journal of Chemical Physics 94, 7221 (1991);
http://dx.doi.org/10.1063/1.460205
26.L. A. Curtiss, K. Raghavachari, P. C. Redfern, V. Rassolov, and J. A. Pople, Journal of Chemical Physics 109, 7764 (1998).
http://dx.doi.org/10.1063/1.477422
27.
27. L. A. Curtiss, P. C. Redfern, and K. Raghavachari, The Journal of Chemical Physics 126, 0841081 (2007).
http://dx.doi.org/10.1063/1.2436888
28.
28. L. A. Curtiss, P. C. Redfern, and K. Raghavachari, The Journal of Chemical Physics 127, 1241051 (2007).
http://dx.doi.org/10.1063/1.2770701
29.
29. J. A. Pople, M. Head-Gordon, and K. Raghavachari, The Journal of Chemical Physics 87, 5968 (1987).
http://dx.doi.org/10.1063/1.453520
30.
30. D. G. Truhlar, Chemical Physics Letters 294(1–3), 45 (1998).
http://dx.doi.org/10.1016/S0009-2614(98)00866-5
31.
31. A. Halkier, T. Helgaker, P. Jorgensen, W. Klopper, and J. Olsen, Chemical Physics Letters 302, 437 (1999).
http://dx.doi.org/10.1016/S0009-2614(99)00179-7
32.
32. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian 09, Revision A.1 (Gaussian, Inc., Wallingford, CT, 2009).
33.
33. I. Matanovic and N. Doslic, Chemical Physics 338, 121 (2007);
33.I. Yavuz and C. Trindle, Journal of Chemical Theory and Computation 4(3), 533 (2008).
http://dx.doi.org/10.1021/ct700161a
34.
34. J. A. Montgomery, M. J. Frisch, J. W. Ochterski, and G. A. Petersson, The Journal of Chemical Physics 110, 2822 (1999).
http://dx.doi.org/10.1063/1.477924
35.
35. P. Carbonniere, T. Lucca, C. Pouchan, N. Rega, and V. Barone, Journal of Computational Chemistry 26(4), 384 (2005).
http://dx.doi.org/10.1002/jcc.20170
36.
36. NIST Computational Chemistry Comparison and Benchmark Database, NIST Standard Reference Database Number 101, Release 15b, August 2011, Editor: Russell D. Johnson III, http://cccbdb.nist.gov/.
37.
37. I. Kohl, K. Winkel, M. Bauer, K. R. Liedl, T. Loerting, and E. Mayer, Angewandte Chemie Int. Ed. 48, 2690 (2009).
http://dx.doi.org/10.1002/anie.200805300
38.
38. R. Ditchfield, W. J. Hehre, and J. A. Pople, The Journal of Chemical Physics 54, (1971).
39.
39. T. Loerting and J. Bernard, CHEMPHYSCHEM 11, 2305 (2010).
http://dx.doi.org/10.1002/cphc.201000220
40.
40. S. A. Clough, M. W. Shephard, E. J. Mlawer, J. S. Delamere, M. J. Iacono, K. Cady-Pereira, S. Boukabara, and P. D. Brown, Journal of Quantitative Spectroscopy and Radiative Transfer 91, 233 (2005); see http://rtweb.aer.com/lblrtm_frame.html.
http://dx.doi.org/10.1016/j.jqsrt.2004.05.058
41.
41. L. S. Rothman, I. E. Gordon, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, J.-P. Champion, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, S. Fally, J.-M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J.-Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Šimečková, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, and J. Vander Auwera, Journal of Quantitative Spectroscopy and Radiative Transfer 110, 533 (2009); see http://www.cfa.harvard.edu/hitran/.
http://dx.doi.org/10.1016/j.jqsrt.2009.02.013
42.
45.
46.
46. R. Gilmozzi and M. Kissler-Patig, The Messenger 143, 25 (2011).
47.
47. B. M. Jakosky and M. S. Team, presented at the Third International Workshop on The Mars Atmosphere: Modeling and Observations, Williamsburg, Virginia, 2008.
http://aip.metastore.ingenta.com/content/aip/journal/adva/2/3/10.1063/1.4755786
Loading
/content/aip/journal/adva/2/3/10.1063/1.4755786
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/2/3/10.1063/1.4755786
2012-09-20
2014-10-22

Abstract

We calculate harmonic frequencies of the three most abundant carbonic acid conformers. For this, different model chemistries are investigated with respect to their benefits and shortcomings. Based on these results we use perturbation theory to calculate anharmonic corrections at the ωB97XD/aug-cc-pVXZ, X = D, T, Q, level of theory and compare them with recent experimental data and theoretical predictions. A discrete variable representation method is used to predict the large anharmonic contributions to the frequencies of the stretching vibrations in the hydrogen bonds in the carbonic acid dimer. Moreover, we re-investigate the energetics of the formation of the carbonic acid dimer from its constituents water and carbon dioxide using a high-level extrapolation method. We find that the ωB97XD functional performs well in estimating the fundamental frequencies of the carbonic acid conformers. Concerning the reaction energetics, the accuracy of ωB97XD is even comparable to the high-level extrapolation method. We discuss possibilities to detect carbonic acid in various natural environments such as Earth's and Martian atmospheres.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/2/3/1.4755786.html;jsessionid=2gptgqtl2rlql.x-aip-live-06?itemId=/content/aip/journal/adva/2/3/10.1063/1.4755786&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Carbonic acid revisited: Vibrational spectra, energetics and the possibility of detecting an elusive molecule
http://aip.metastore.ingenta.com/content/aip/journal/adva/2/3/10.1063/1.4755786
10.1063/1.4755786
SEARCH_EXPAND_ITEM