1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Depth profile of the tetragonal distortion in thick GaMnAs layers grown on GaAs by Rutherford backscattering/channeling
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/2/4/10.1063/1.4757917
1.
1.M. Wang, R. P. Campion, A. W. Rushforth, K. W. Edmonds, C. T. Foxon, and B. L. Gallagher, Appl. Phys. Lett. 93, 132103 (2008).
http://dx.doi.org/10.1063/1.2992200
2.
2.L. Chen, X. Yang, F. Yang, J. Zhao, J. Misuraca, P. Xiong, and S. von Molnár, Nano Lett. 11, 2584 (2011).
http://dx.doi.org/10.1021/nl201187m
3.
3.H. Ohno, A. Shen, F. Matsukura, A. Oiwa, A. Endo, S. Katsumoto, and Y. Iye, Appl. Phys. Lett. 69, 363 (1996).
http://dx.doi.org/10.1063/1.118061
4.
4.M. Abolfath, T. Jungwirth, J. Brum, and A. H. MacDonald, Phys. Rev. B 63, 054418 (2001).
http://dx.doi.org/10.1103/PhysRevB.63.054418
5.
5.J. Sadowski, R. Mathieu, P. Svedlindh, J. Z. Domagala, J. Bak-Misiuk, K. Światek, M. Karlsteen, J. Kanski, L. Ilver, H. Åsklund, and U. Södervall, Appl. Phys. Lett. 78, 3271 (2001).
http://dx.doi.org/10.1063/1.1370535
6.
6.J. Sadowski and J. Z. Domagala, Phys. Rev. B 69, 075206 (2004).
http://dx.doi.org/10.1103/PhysRevB.69.075206
7.
7.W. K. Chu, J. W. Mayer, and M. A. Nicolet, Backscattering Spectrometry (Academic, New York, 1978).
8.
8.K. M. Yu, W. Walukiewicz, T. Wojtowicz, I. Kuryliszyn, X. Liu, Y. Sasaki, and J. K. Furdyna, Phys. Rev. B 65, 201303R (2002).
http://dx.doi.org/10.1103/PhysRevB.65.201303
9.
9.M. Sawicki, F. Matsukura, A. Idziaszek, T. Dietl, G. M. Schott, C. Ruester, C. Gould, G. Karczewski, G. Schmidt, and L. W. Molenkamp, Phys. Rev. B 70, 245325 (2004).
http://dx.doi.org/10.1103/PhysRevB.70.245325
10.
10.L. Chen, S. Yan, P. F. Xu, J. Lu, J. J. Deng, Y. Ji, K. Y. Wang, and J. H. Zhao, J. Magn. Magn. Mater. 322, 32503254 (2010).
http://dx.doi.org/10.1016/j.jmmm.2010.06.002
11.
11.U. Welp, V. K. Vlasko-Vlasov, A. Manzel, H. D. You, X. Liu, J. K. Furdyna, and T. Wojtowicz, Appl. Phys. Lett. 85, 260 (2004).
http://dx.doi.org/10.1063/1.1771801
12.
12.S. Piano, X. Marti, A. W. Rushforth, K. W. Edmonds, R. P. Campion, M. Wang, O. Caha, T. U. Schülli, V. Holý, and B. L. Gallagher, Appl. Phys. Lett. 98, 152503 (2011).
http://dx.doi.org/10.1063/1.3579534
13.
13.M. Kopecký, J. Kub, F. Máca, J. Mašek, O. Pacherová, A. W. Rushforth, B. L. Gallagher, R. P. Campion, V. Novák, and T. Jungwirth, Phys. Rev. B 83, 235324 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.235324
14.
14.M. Sawicki, K.-Y. Wang, K. W. Edmonds, R. P. Campion, C. R. Staddon, N. R. S. Farley, C. T. Foxon, E. Papis, E. Kamińska, A. Piotrowska, T. Dietl, and B. L. Gallagher, Phys. Rev. B 71, 121302 (2005).
http://dx.doi.org/10.1103/PhysRevB.71.121302
15.
15.Y. B. Xu, D. J. Freeland, M. Tselepi, and J. A. C. Bland, Phys. Rev. B 62, 11671170 (2000).
http://dx.doi.org/10.1103/PhysRevB.62.1167
16.
16.O. Thomas, Q. Shen, P. Schieffer, N. Tournerie, and B. Lépine, Phys. Rev. Lett. 90, 017205 (2003).
http://dx.doi.org/10.1103/PhysRevLett.90.017205
17.
17.M. F. Wu, C. Chen, D. Zhu, S. Zhou, A. Vantomme, G. Langouche, B. S. Zhang and H. Yang, Appl. Phys. Lett. 80, 4130 (2002).
http://dx.doi.org/10.1063/1.1483389
18.
18.S. Pereira, M. R. Correia, E. Pereira, K. P. O’Donnell, E. Alves, A. D. Sequeira, and N. Franco, Appl. Phys. Lett. 79, 1432 (2001).
http://dx.doi.org/10.1063/1.1397276
19.
19.K. Lorenz, N. Franco, E. Alves, I. M. Watson, R. W. Martin, and K. P. O’Donnell, Phy. Rev. Lett. 97, 085501 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.085501
20.
20.K. Nakajima, S. Joumori, M. Suzuki, K. Kimura, T. Osipowicz, K. L. Tok, J. Z. Zheng, A. See, and B. C. Zhang, Appl. Phys. Lett. 83, 296 (2003).
http://dx.doi.org/10.1063/1.1592310
21.
21.S. Pereira, M. R. Correia, E. Pereira, K. P. O’Donnell, C. Trager-Cowan, F. Sweeney, and E. Alves, Phys. Rev. B 64, 205311 (2001).
http://dx.doi.org/10.1103/PhysRevB.64.205311
22.
22.M. Birowska, C. Śliwa, J. A. Majewski, and T. Dietl, Phys. Rev. Lett. 108, 237203 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.237203
23.
23.M. Kopecký, J. Kub, F. Máca, J. Mašek, O. Pacherová, A. W. Rushforth, B. L. Gallagher, R. P. Campion, V. Novák, and T. Jungwirth, Phys. Rev. B 83, 235324 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.235324
http://aip.metastore.ingenta.com/content/aip/journal/adva/2/4/10.1063/1.4757917
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

Magnetization curves at 5 K along different directions: (a) in-plane [100] and out-of-plane [001], (b) in-plane , [110] and [100]. The sample shows in-plane easy axis, at the same time a uniaxial anisotropy along . The temperature dependent magnetization is shown in the inset of (a), revealing the Curie temperature of around 40 K.

Image of FIG. 2.

Click to view

FIG. 2.

Illustration to explain the change of the tilt of the [112] axis in fully strained GaMnAs. For fully relaxed GaMnAs, ΦR is 35.26°, while for a strained film Φs is smaller than 35.26°. By RBS channeling, Φs can be measured directly.

Image of FIG. 3.

Click to view

FIG. 3.

Random and channeling RBS spectra of GaMnAs(a) along the [001] axis, (b) along the [112] axis, six windows (W1…W6) corresponding to a depth 0…1.2 μm are indicated. The insets show the measurement geometry and arrows labeled with Ga and As indicate the backscattered He energy by Ga and As at the surface, respectively.

Image of FIG. 4.

Click to view

FIG. 4.

(a) Angular scan along the GaMnAs{110} plane, left: [001] dip and right [112] dip. A Φs of 35.19° is determined from the angular scans. (b) The depth dependence of the tetragonal distortion (e T) of the GaMnAs layer measured by RBS/channeling, indicating a uniform distribution of strain over the measured depth. The dashed line is only a guide for eyes. There is no strain relaxation along the growth direction. The error bar is calculated according to the fitting errors in (a).

Loading

Article metrics loading...

/content/aip/journal/adva/2/4/10.1063/1.4757917
2012-10-02
2014-04-25

Abstract

We provide a direct measurement of the tetragonal distortion in thick GaMnAs as a function of depth by Rutherford backscattering combining with channeling. The thick GaMnAs film is tetragonally strained and the tetragonal distortion is found to be depth independent. Our finding excludes strain relaxation as the origin of the uniaxial in-plane magnetic anisotropy observed in GaMnAs.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/2/4/1.4757917.html;jsessionid=5ph0xqwoevoh.x-aip-live-06?itemId=/content/aip/journal/adva/2/4/10.1063/1.4757917&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Depth profile of the tetragonal distortion in thick GaMnAs layers grown on GaAs by Rutherford backscattering/channeling
http://aip.metastore.ingenta.com/content/aip/journal/adva/2/4/10.1063/1.4757917
10.1063/1.4757917
SEARCH_EXPAND_ITEM