1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
oa
Piezoelectric superlattice: From piezoelectric to Huang-Kun-like equations
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/2/4/10.1063/1.4763463
1.
1. V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photon. 1, 4148 (2007).
http://dx.doi.org/10.1038/nphoton.2006.49
2.
2. R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323, 366369 (2009).
http://dx.doi.org/10.1126/science.1166949
3.
3. X. Huang, Y. Lai, Z. H. Hang, H. Zheng, and C. T. Chan, “Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials,” Nat. Mater. 10, 582586 (2011).
http://dx.doi.org/10.1038/nmat3030
4.
4. D. Feng, N. B. Ming, J. F. Hong, Y. S. Yang, J. S. Zhu, Z. Yang, and Y. N. Wang, “Enhancement of second- harmonic generation in LiNbO3 crystals with periodic laminar ferroelectric domains,” Appl. Phys. Lett. 37, 607609 (1980).
http://dx.doi.org/10.1063/1.92035
5.
5. Y. Y. Zhu and N. B. Ming, “Second-harmonic generation in a Fibonacci optical superlattice and the dispersive effect of the refractive index,” Phys. Rev. B 42, 36763679 (1990).
http://dx.doi.org/10.1103/PhysRevB.42.3676
6.
6. S. N. Zhu, Y. Y. Zhu, and N. B. Ming, “Quasi-phase-matched third-harmonic generation in a quasi-periodic optical superlattice,” Science 278, 843846 (1997).
http://dx.doi.org/10.1126/science.278.5339.843
7.
7. V. Berger, “Nonlinear photonic crystals,” Phys. Rev. Lett. 81, 41364139 (1998).
http://dx.doi.org/10.1103/PhysRevLett.81.4136
8.
8. C. B. Clausen, Y. S. Kivshar, O. Bang, and P. L. Christiansen, “Quasiperiodic envelope solitons,” Phys. Rev. Lett. 83, 47404743 (1999).
http://dx.doi.org/10.1103/PhysRevLett.83.4740
9.
9. N. G. R. Broderick, G. W. Ross, H. L. Offerhaus, D. J. Richardson, and D. C. Hanna, “Hexagonally poled Lithium Niobate: A two-dimensional nonlinear photonic crystal,” Phys. Rev. Lett. 84, 43454348 (2000).
http://dx.doi.org/10.1103/PhysRevLett.84.4345
10.
10. P. Xu, S. H. Ji, S. N. Zhu, X. Q. Yu, J. Sun, H. T. Wang, J. L. He, Y. Y. Zhu, and N. B. Ming, “Conical second harmonic generation in a two-dimensional χ(2) photonic crystal: A hexagonally poled LiTaO3 crystalPhys. Rev. Lett. 93, 133904 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.133904
11.
11. Y. Q. Qin, C. Zhang, Y. Y. Zhu, X. P. Hu, and G. Zhao, “Wave-front engineering by Huygens-Fresnel principle for nonlinear optical interactions in domain engineered structures,” Phys. Rev. Lett. 100, 063902 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.063902
12.
12. T. Ellenbogen, N. Voloch-Bloch, A. Ganany-Padowicz, and A. Arie, “Nonlinear generation and manipulation of Airy beams,” Nat. Photon. 3, 395398 (2009).
http://dx.doi.org/10.1038/nphoton.2009.95
13.
13. H. Huang, C. P. Huang, C. Zhang, D. Zhu, X. H. Hong, J. Lu, J. Jiang, Q. J. Wang, and Y. Y. Zhu, “Second-harmonic generation in a periodically poled congruent LiTaO3 sample with phase-tuned nonlinear Cherenkov radiation,” Appl. Phys. Lett. 100, 022905 (2012).
http://dx.doi.org/10.1063/1.3676440
14.
14. Y. Q. Lu, Z. L. Wan, Q. Wang, Y. X. Xi, and N. B. Ming, “Electro-optic effect of periodically poled optical superlattice LiNbO3 and its applications,” Appl. Phys. Lett. 77, 37193721 (2000).
http://dx.doi.org/10.1063/1.1329325
15.
15. K. T. Gahagan, D. A. Scrymgeour, J. L. Casson, V. Gopalan, and J. M. Robinson, “Integrated high-power electro-optic lens and large-angle deflector,” Appl. Opt. 40, 56385642 (2001).
http://dx.doi.org/10.1364/AO.40.005638
16.
16. C. P. Huang, Q. J. Wang, and Y. Y. Zhu, “Cascaded frequency doubling and electro-optic coupling in a single optical superlattice,” Appl. Phys. B 80, 741744 (2005).
http://dx.doi.org/10.1007/s00340-005-1776-7
17.
17. Y. Y. Zhu, N. B. Ming, W. H. Jiang, and Y. A. Shui, “High frequency resonance in acoustic superlattice of LiNbO3 crystals,” Appl. Phys. Lett. 53, 22782280 (1988).
http://dx.doi.org/10.1063/1.100514
18.
18. Y. Y. Zhu and N. B. Ming, “Ultrasonic excitation and propagation in an acoustic superlattice,” J. Appl. Phys. 72, 904914 (1992).
http://dx.doi.org/10.1063/1.351766
19.
19. I. V. Ostrovskii and A. B. Nadtochiy, “Domain resonance in two-dimensional periodically poled ferroelectric resonator,” Appl. Phys. Lett. 86, 222902 (2005).
http://dx.doi.org/10.1063/1.1940726
20.
20. Y. Q. Lu, Y. Y. Zhu, Y. F. Chen, S. N. Zhu, N. B. Ming, and Y. J. Feng, “Optical properties of an ionic-type phononic crystal,” Science 284, 18221824 (1999).
http://dx.doi.org/10.1126/science.284.5421.1822
21.
21. Y. Y. Zhu, X. J. Zhang, Y. Q. Lu, Y. F. Chen, S. N. Zhu, and N. B. Ming, “New type of polariton in a piezoelectric superlattice,” Phys. Rev. Lett. 90, 053903 (2003).
http://dx.doi.org/10.1103/PhysRevLett.90.053903
22.
22. X. J. Zhang, R. Q. Zhu, J. Zhao, Y. F. Chen, and Y. Y. Zhu, “Phonon-polariton dispersion and the polariton-based photonic band gap in piezoelectric superlattices,” Phys. Rev. B 69, 085118 (2004).
http://dx.doi.org/10.1103/PhysRevB.69.085118
23.
23. C. P. Huang and Y. Y. Zhu, “Piezoelectric-induced polariton coupling in a superlattice,” Phys. Rev. Lett. 94, 117401 (2005).
http://dx.doi.org/10.1103/PhysRevLett.94.117401
24.
24. W. Zhang, Z. Liu, and Z. Wang, “Band structures and transmission spectra of piezoelectric superlattices,” Phys. Rev. B 71, 195114 (2005).
http://dx.doi.org/10.1103/PhysRevB.71.195114
25.
25. K. S. Joseph Wilson and K. Navaneethakrishnan, “Phonon-polariton in a piezoelectric superlattice,” Physica E 31, 209212 (2006).
http://dx.doi.org/10.1016/j.physe.2005.12.161
26.
26. X. J. Zhang, Y. Q. Lu, Y. Y. Zhu, Y. F. Chen, and S. N. Zhu, “Phonon-polaritons in quasiperiodic piezoelectric superlattices,” Appl. Phys. Lett. 85, 35313533 (2004).
http://dx.doi.org/10.1063/1.1803939
27.
27. M. Y. Yang, L. C. Wu, and J. Y. Tseng, “Phonon-polariton in two-dimensional piezoelectric phononic crystals,” Phys. Lett. A 372, 47304735 (2008).
http://dx.doi.org/10.1016/j.physleta.2008.05.012
28.
28. R. C. Yin, C. He, M. H. Lu, Y. Q. Lu, and Y. F. Chen, “Polaritons in an artificial ionic-type crystal made of two-dimensional periodically inversed multi-domain ferroelectric crystals,” J. Appl. Phys. 109, 064110 (2011).
http://dx.doi.org/10.1063/1.3554831
29.
29. M. Senesi and M. Ruzzene, “Piezoelectric superlattices as multi-field internally resonating metamaterials,” AIP Advances 1, 041504 (2011).
http://dx.doi.org/10.1063/1.3676173
30.
30. H. Liu, S. N. Zhu, Z. G. Dong, Y. Y. Zhu, Y. F. Chen, and N. B. Ming, “Coupling of electromagnetic waves and superlattice vibrations in a piezomagnetic superlattice: Creation of a polariton through the piezomagnetic effect,” Phys. Rev. B 71, 125106 (2005).
http://dx.doi.org/10.1103/PhysRevB.71.125106
31.
31. X. Zhang, D. Wu, C. Sun, and X. Zhang, “Artificial phonon-plasmon polariton at the interface of piezoelectric metamaterials and semiconductors,” Phys. Rev. B 76, 085318 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.085318
32.
32. Z. Liu and W. Zhang, “Multiband polaritonic filter made of piezoelectric superlattices,” Phys. Lett. A 351, 192197 (2006).
http://dx.doi.org/10.1016/j.physleta.2005.10.067
33.
33. B. A. Auld, Acoustic Fields and Waves in Solids (Wiley, New York, 1973).
34.
34. K. Huang, “On the interaction between the radiation field and ionic crystals,” Proc. R. Soc. London A 208, 352365 (1951);
http://dx.doi.org/10.1098/rspa.1951.0166
34.M. Born and K. Huang, Dynamical Theory of Crystal Lattices (Clarendon, Oxford, 1954).
35.
35. D. L. Mills and E. Burstein, “Polaritons: The electromagnetic modes of media,” Rep. Prog. Phys. 37, 817926 (1974).
http://dx.doi.org/10.1088/0034-4885/37/7/001
36.
36. C. P. Huang, X. G. Yin, Q. J. Wang, H. Huang, and Y. Y. Zhu, “Long-wavelength optical properties of a plasmonic crystal,” Phys. Rev. Lett. 104, 016402 (2010).
http://dx.doi.org/10.1103/PhysRevLett.104.016402
37.
37. A. W. Warner, M. Onoe, and G. A. Coquin, “Determination of elastic and piezoelectric constants for crystals in class (3m),” J. Acoust. Soc. Am. 42, 12231231 (1967).
http://dx.doi.org/10.1121/1.1910709
38.
38. J. D. Jackson, Classical Electrodynamics (Wiley, New York, 1962).
http://aip.metastore.ingenta.com/content/aip/journal/adva/2/4/10.1063/1.4763463
Loading
/content/aip/journal/adva/2/4/10.1063/1.4763463
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/2/4/10.1063/1.4763463
2012-10-17
2014-11-28

Abstract

The piezoelectricsuperlattice (PSL) consisting of periodically inverted ferro- electric domains is a special kind of artificially microstructured material. Similar to the ionic crystals, the strong coupling between the electromagnetic wave and superlattice vibration of PSL may generate the phononpolariton. In this paper, by starting with the piezoelectric equations and classic motion equation, the gap between the artificial and classic lattices has been bridged, where a set of Huang-Kun (HK)-like equations were established and can be shared by both systems. Our results also show that the coupling between the photon and longitudinal “optical” phonon, which is not present in a real crystal, is dominated by the HK-like equations. The connection between the two seemingly different systems suggests that they are governed by a common physics.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/2/4/1.4763463.html;jsessionid=3m75vm3r8puhb.x-aip-live-02?itemId=/content/aip/journal/adva/2/4/10.1063/1.4763463&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Piezoelectric superlattice: From piezoelectric to Huang-Kun-like equations
http://aip.metastore.ingenta.com/content/aip/journal/adva/2/4/10.1063/1.4763463
10.1063/1.4763463
SEARCH_EXPAND_ITEM