Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photon. 1, 4148 (2007).
2. R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323, 366369 (2009).
3. X. Huang, Y. Lai, Z. H. Hang, H. Zheng, and C. T. Chan, “Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials,” Nat. Mater. 10, 582586 (2011).
4. D. Feng, N. B. Ming, J. F. Hong, Y. S. Yang, J. S. Zhu, Z. Yang, and Y. N. Wang, “Enhancement of second- harmonic generation in LiNbO3 crystals with periodic laminar ferroelectric domains,” Appl. Phys. Lett. 37, 607609 (1980).
5. Y. Y. Zhu and N. B. Ming, “Second-harmonic generation in a Fibonacci optical superlattice and the dispersive effect of the refractive index,” Phys. Rev. B 42, 36763679 (1990).
6. S. N. Zhu, Y. Y. Zhu, and N. B. Ming, “Quasi-phase-matched third-harmonic generation in a quasi-periodic optical superlattice,” Science 278, 843846 (1997).
7. V. Berger, “Nonlinear photonic crystals,” Phys. Rev. Lett. 81, 41364139 (1998).
8. C. B. Clausen, Y. S. Kivshar, O. Bang, and P. L. Christiansen, “Quasiperiodic envelope solitons,” Phys. Rev. Lett. 83, 47404743 (1999).
9. N. G. R. Broderick, G. W. Ross, H. L. Offerhaus, D. J. Richardson, and D. C. Hanna, “Hexagonally poled Lithium Niobate: A two-dimensional nonlinear photonic crystal,” Phys. Rev. Lett. 84, 43454348 (2000).
10. P. Xu, S. H. Ji, S. N. Zhu, X. Q. Yu, J. Sun, H. T. Wang, J. L. He, Y. Y. Zhu, and N. B. Ming, “Conical second harmonic generation in a two-dimensional χ(2) photonic crystal: A hexagonally poled LiTaO3 crystalPhys. Rev. Lett. 93, 133904 (2004).
11. Y. Q. Qin, C. Zhang, Y. Y. Zhu, X. P. Hu, and G. Zhao, “Wave-front engineering by Huygens-Fresnel principle for nonlinear optical interactions in domain engineered structures,” Phys. Rev. Lett. 100, 063902 (2008).
12. T. Ellenbogen, N. Voloch-Bloch, A. Ganany-Padowicz, and A. Arie, “Nonlinear generation and manipulation of Airy beams,” Nat. Photon. 3, 395398 (2009).
13. H. Huang, C. P. Huang, C. Zhang, D. Zhu, X. H. Hong, J. Lu, J. Jiang, Q. J. Wang, and Y. Y. Zhu, “Second-harmonic generation in a periodically poled congruent LiTaO3 sample with phase-tuned nonlinear Cherenkov radiation,” Appl. Phys. Lett. 100, 022905 (2012).
14. Y. Q. Lu, Z. L. Wan, Q. Wang, Y. X. Xi, and N. B. Ming, “Electro-optic effect of periodically poled optical superlattice LiNbO3 and its applications,” Appl. Phys. Lett. 77, 37193721 (2000).
15. K. T. Gahagan, D. A. Scrymgeour, J. L. Casson, V. Gopalan, and J. M. Robinson, “Integrated high-power electro-optic lens and large-angle deflector,” Appl. Opt. 40, 56385642 (2001).
16. C. P. Huang, Q. J. Wang, and Y. Y. Zhu, “Cascaded frequency doubling and electro-optic coupling in a single optical superlattice,” Appl. Phys. B 80, 741744 (2005).
17. Y. Y. Zhu, N. B. Ming, W. H. Jiang, and Y. A. Shui, “High frequency resonance in acoustic superlattice of LiNbO3 crystals,” Appl. Phys. Lett. 53, 22782280 (1988).
18. Y. Y. Zhu and N. B. Ming, “Ultrasonic excitation and propagation in an acoustic superlattice,” J. Appl. Phys. 72, 904914 (1992).
19. I. V. Ostrovskii and A. B. Nadtochiy, “Domain resonance in two-dimensional periodically poled ferroelectric resonator,” Appl. Phys. Lett. 86, 222902 (2005).
20. Y. Q. Lu, Y. Y. Zhu, Y. F. Chen, S. N. Zhu, N. B. Ming, and Y. J. Feng, “Optical properties of an ionic-type phononic crystal,” Science 284, 18221824 (1999).
21. Y. Y. Zhu, X. J. Zhang, Y. Q. Lu, Y. F. Chen, S. N. Zhu, and N. B. Ming, “New type of polariton in a piezoelectric superlattice,” Phys. Rev. Lett. 90, 053903 (2003).
22. X. J. Zhang, R. Q. Zhu, J. Zhao, Y. F. Chen, and Y. Y. Zhu, “Phonon-polariton dispersion and the polariton-based photonic band gap in piezoelectric superlattices,” Phys. Rev. B 69, 085118 (2004).
23. C. P. Huang and Y. Y. Zhu, “Piezoelectric-induced polariton coupling in a superlattice,” Phys. Rev. Lett. 94, 117401 (2005).
24. W. Zhang, Z. Liu, and Z. Wang, “Band structures and transmission spectra of piezoelectric superlattices,” Phys. Rev. B 71, 195114 (2005).
25. K. S. Joseph Wilson and K. Navaneethakrishnan, “Phonon-polariton in a piezoelectric superlattice,” Physica E 31, 209212 (2006).
26. X. J. Zhang, Y. Q. Lu, Y. Y. Zhu, Y. F. Chen, and S. N. Zhu, “Phonon-polaritons in quasiperiodic piezoelectric superlattices,” Appl. Phys. Lett. 85, 35313533 (2004).
27. M. Y. Yang, L. C. Wu, and J. Y. Tseng, “Phonon-polariton in two-dimensional piezoelectric phononic crystals,” Phys. Lett. A 372, 47304735 (2008).
28. R. C. Yin, C. He, M. H. Lu, Y. Q. Lu, and Y. F. Chen, “Polaritons in an artificial ionic-type crystal made of two-dimensional periodically inversed multi-domain ferroelectric crystals,” J. Appl. Phys. 109, 064110 (2011).
29. M. Senesi and M. Ruzzene, “Piezoelectric superlattices as multi-field internally resonating metamaterials,” AIP Advances 1, 041504 (2011).
30. H. Liu, S. N. Zhu, Z. G. Dong, Y. Y. Zhu, Y. F. Chen, and N. B. Ming, “Coupling of electromagnetic waves and superlattice vibrations in a piezomagnetic superlattice: Creation of a polariton through the piezomagnetic effect,” Phys. Rev. B 71, 125106 (2005).
31. X. Zhang, D. Wu, C. Sun, and X. Zhang, “Artificial phonon-plasmon polariton at the interface of piezoelectric metamaterials and semiconductors,” Phys. Rev. B 76, 085318 (2007).
32. Z. Liu and W. Zhang, “Multiband polaritonic filter made of piezoelectric superlattices,” Phys. Lett. A 351, 192197 (2006).
33. B. A. Auld, Acoustic Fields and Waves in Solids (Wiley, New York, 1973).
34. K. Huang, “On the interaction between the radiation field and ionic crystals,” Proc. R. Soc. London A 208, 352365 (1951);
34.M. Born and K. Huang, Dynamical Theory of Crystal Lattices (Clarendon, Oxford, 1954).
35. D. L. Mills and E. Burstein, “Polaritons: The electromagnetic modes of media,” Rep. Prog. Phys. 37, 817926 (1974).
36. C. P. Huang, X. G. Yin, Q. J. Wang, H. Huang, and Y. Y. Zhu, “Long-wavelength optical properties of a plasmonic crystal,” Phys. Rev. Lett. 104, 016402 (2010).
37. A. W. Warner, M. Onoe, and G. A. Coquin, “Determination of elastic and piezoelectric constants for crystals in class (3m),” J. Acoust. Soc. Am. 42, 12231231 (1967).
38. J. D. Jackson, Classical Electrodynamics (Wiley, New York, 1962).

Data & Media loading...


Article metrics loading...



The piezoelectricsuperlattice (PSL) consisting of periodically inverted ferro- electric domains is a special kind of artificially microstructured material. Similar to the ionic crystals, the strong coupling between the electromagnetic wave and superlattice vibration of PSL may generate the phononpolariton. In this paper, by starting with the piezoelectric equations and classic motion equation, the gap between the artificial and classic lattices has been bridged, where a set of Huang-Kun (HK)-like equations were established and can be shared by both systems. Our results also show that the coupling between the photon and longitudinal “optical” phonon, which is not present in a real crystal, is dominated by the HK-like equations. The connection between the two seemingly different systems suggests that they are governed by a common physics.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd