1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Obtaining material identification with cosmic ray radiography
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/2/4/10.1063/1.4766179
1.
1. E. P. George, Commonwealth Engineer, 455 (1955).
2.
2. L. W. Alvarez, J. A. Anderson, F. Elbedwe*, J. Burkhard, A. Fakhry, A. Girgis, A. Goneid, F. Hassan, D. Iverson, G. Lynch, Z. Miligy, A. H. Moussa, Mohammed, and L. Yazolino, Science 167, 832 (1970).
http://dx.doi.org/10.1126/science.167.3919.832
3.
3. H. Tanaka, K. Nagamine, N. Kawamura, S. N. Nakamura, K. Ishida, and K. Shimomura, Nuclear Instruments & Methods in Physics Research, Section A (Accelerators, Spectrometers, Detectors and Associated Equipment) 507, 657 (2003).
http://dx.doi.org/10.1016/S0168-9002(03)01372-X
4.
4. J. Allison, K. Amako, J. Apostolakis, H. Araujo, P. A. Dubois, M. Asai, G. Barrand, R. Capra, S. Chauvie, and R. Chytracek, Nuclear Science, IEEE Transactions on 53, 270 (2006).
http://dx.doi.org/10.1109/TNS.2006.869826
5.
5. H. Tanaka, K. Nagamine, N. Kawamura, S. N. Nakamura, K. Ishida, and K. Shimomura, Hyperfine Interactions 138, 521 (2001).
http://dx.doi.org/10.1023/A:1020843100008
6.
6. K. N. Borozdin, G. E. Hogan, C. Morris, W. C. Priedhorsky, A. Saunders, L. J. Schultz, and M. E. Teasdale, Nature 422, 277 (2003).
http://dx.doi.org/10.1038/422277a
7.
7. L. B. N. L. P. D. Group and P. D. Group, The Review of Particle Physics (Lawrence Berkeley National Laboratory Particle Data Group, 2010).
8.
8. C. Morris, J. W. Hopson, and P. Goldstone, Los Alamos Science 30 (2006).
9.
9. P. K. F. Grieder, Cosmic Rays at Earth (Elsevier Science, 2001).
10.
10. H. A. Bethe, Physical Review 89, 1256 (1953).
http://dx.doi.org/10.1103/PhysRev.89.1256
11.
11. G. R. Lynch and O. I. Dahl, Nuclear Instruments & Methods in Physics Research, Section B (Beam Interactions with Materials and Atoms) B 58, 6 (1991).
http://dx.doi.org/10.1016/0168-583X(91)95671-Y
12.
12. G. Moliere, Zeitschrift fur Naturforschung Section A-A Journal of Physical Sciences 2, 133 (1947).
13.
13. G. Moliere, Zeitschrift fur Naturforschung Section A-A Journal of Physical Sciences 3, 78 (1948).
14.
14. C. Morris, J. W. Hopson, and P. Goldstone, Los Alamos Science 30 (2006).
15.
15. K. N. Borozdin, G. E. Hogan, C. Morris, W. C. Priedhorsky, A. Saunders, L. J. Schultz, and M. E. Teasdale, Nature 422, 277 (2003).
http://dx.doi.org/10.1038/422277a
16.
16. C. L. Morris, C. C. Alexander, J. D. Bacon, K. N. Borozdin, D. J. Clark, R. Chartrand, C. J. Espinoza, A. M. Fraser, M. C. Galassi, J. A. Green, J. S. Gonzales, J. J. Gomez, N. W. Hengartner, G. E. Hogan, A. V. Klimenko, M. F. Makela, P. McGaughey, J. J. Medina, F. E. Pazuchanics, W. C. Priedhorsky, J. C. Ramsey, A. Saunders, R. C. Schirato, L. J. Schultz, M. J. Sossong, and G. S. Blanpied, Science and Global Security 16, 37 (2008).
http://dx.doi.org/10.1080/08929880802335758
17.
17. W. C. Priedhorsky, K. N. Borozdin, G. E. Hogan, C. Morris, A. Saunders, L. J. Schultz, and M. E. Teasdale, Review of Scientific Instruments 74, 4294 (2003).
http://dx.doi.org/10.1063/1.1606536
18.
18. L. J. Schultz, G. S. Blanpied, K. N. Borozdin, A. M. Fraser, N. W. Hengartner, A. V. Klimenko, C. L. Morris, C. Oram, and M. J. Sossong, IEEE Transactions on Image Processing 16, 1985 (2007).
http://dx.doi.org/10.1109/TIP.2007.901239
http://aip.metastore.ingenta.com/content/aip/journal/adva/2/4/10.1063/1.4766179
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

Photograph of the MMT. Objects for study were placed in the 60 cm gap between the two detector “supermodules”.

Image of FIG. 2.

Click to view

FIG. 2.

(Top) A photograph of the bottom parts of a layered shielding box with a 10 × 10 × 10 cm3 (20 kg) uranium cube. When fully assembled the shielding box surrounds the uranium with 5 cm of lead and surrounds the lead with 15 cm of borated polyethylene. (Bottom right) a reconstructed image showing a slice at roughly the center of the object from a cosmic ray tomography of the shielding box. (Bottom left) a slice of the shielding box with the uranium. The grey scale of the image represents the strength of the scattering signal.

Image of FIG. 3.

Click to view

FIG. 3.

Spectrum of vertical cosmic ray flux at sea level. Open symbols are the data.9 The line is a parameterization. Fitted spectrum (see text), solid symbols, compared to model and previous data (open symbols). A parameterization of the sea level flux (black) and its extrapolation to the spectrum to the altitude of Los Alamos (green curve).

Image of FIG. 4.

Click to view

FIG. 4.

Transmission images for the lead (left), steel (bottom right) and concrete (top right) targets. The three thickness of lead were radiographed in a single run. The other targets were imaged during individual runs. The grey scale is linear and ranges in value from 0.6 (black) to 1.2 (white) in transmission for all targets.

Image of FIG. 5.

Click to view

FIG. 5.

(Left) Negative of the natural logarithm of transmission vs. calculated energy loss for three thickness of lead, concrete and steel. (Right) Fitted radiation lengths vs. radiation lengths.

Image of FIG. 6.

Click to view

FIG. 6.

(Left) Measured angular distributions for various thickness of lead (points) and the fit (lines) for various thicknesses of lead. (Right) The decomposition of the fit into energy groups. Empty shows the angular distribution with no object in the scanner.

Image of FIG. 7.

Click to view

FIG. 7.

Radiation length images of the test objects described above.

Image of FIG. 8.

Click to view

FIG. 8.

Radiation lengths vs. attenuation lengths for the different test objects. The different materials lie on lines with different slopes, demonstrating material identification.

Loading

Article metrics loading...

/content/aip/journal/adva/2/4/10.1063/1.4766179
2012-11-09
2014-04-25

Abstract

The passage of muons through matter is dominated by the Coulomb interaction with electrons and nuclei in the matter. The muon interaction with the electrons leads to continuous energy loss and stopping of the muons. The muon interaction with nuclei leads to angular diffusion. Using both stopped muons and angle diffusion interactions allows us to determine density and identify materials. Here we demonstrate material identification using data taken at Los Alamos with a particle tracker built from a set of sealed drift tubes with commercial electronics and software, the Mini Muon Tracker (MMT).

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/2/4/1.4766179.html;jsessionid=2es6q64fic61g.x-aip-live-06?itemId=/content/aip/journal/adva/2/4/10.1063/1.4766179&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Obtaining material identification with cosmic ray radiography
http://aip.metastore.ingenta.com/content/aip/journal/adva/2/4/10.1063/1.4766179
10.1063/1.4766179
SEARCH_EXPAND_ITEM