1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Modeling of downconverter based on Pr3+-Yb3+ codoped fluoride glasses to improve sc-Si solar cells efficiency
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/2/4/10.1063/1.4766187
1.
1. T. Trupke, M. A. Green, and P. Würfel, J. Appl. Phys. 92, 1668 (2002).
http://dx.doi.org/10.1063/1.1492021
2.
2. W. G. van Sark, Appl. Phys. Lett. 87, 151117 (2005).
http://dx.doi.org/10.1063/1.2099532
3.
3. W. G. J. H. M. van Sark, A. Meijerink, R. E. I. Schropp, J. A. M. van Roosmalen, and E. H. Lysen, Sol. Energy Mater. Sol. Cells 87, 395 (2005).
http://dx.doi.org/10.1016/j.solmat.2004.07.055
4.
4. W. G. J. H. M. van Sark, Thin Solid Films 516, 6808 (2008).
http://dx.doi.org/10.1016/j.tsf.2007.12.080
5.
5. W. G. J. H. M. van Sark, A. Meijerink, R. E. I. Schropp, J. A. M. van Roosmalen, and E. H. Lysen, Semiconductors 38, 962 (2004).
http://dx.doi.org/10.1134/1.1787120
6.
6. R. T. Wegh, H. Donker, K. D. Oskam, and A. Meijerink, Science 283, 663 (1999).
http://dx.doi.org/10.1126/science.283.5402.663
7.
7. C. Strumpel, M. McCann, G. Beaucarne, V. Arkhipov, A. Slaoui, V. Svrcek, C. del Canizo, and I. Tobias, Sol. Energy Mater. Sol. Cells 91, 238 (2007).
http://dx.doi.org/10.1016/j.solmat.2006.09.003
8.
8. P. Vergeer, T. J. H. Vlugt, M. H. F. Kox, M. I. Den Hertog, J. P. J. M. Van der Eerden, and A. Meijerink, Phys. Rev. B 71, 014119 (2005).
http://dx.doi.org/10.1103/PhysRevB.71.014119
9.
9. B. S. Richards, Sol. Energy Mater. Sol. Cells 90, 1189 (2006).
http://dx.doi.org/10.1016/j.solmat.2005.07.001
10.
10. X. F. Liu, Y. Teng, Y. X. Zhuang, J. H. Xie, Y. B. Qiao, G. P. Dong, D. P. Chen, and J. R. Qiu, Opt. Lett. 34, 3565 (2009).
http://dx.doi.org/10.1364/OL.34.003565
11.
11. Y. Teng, J. J. Zhou, X. F. Liu, S. Ye, and J. R. Qiu, Opt. Express 18, 9671 (2010).
http://dx.doi.org/10.1364/OE.18.009671
12.
12. Q. Y. Zhang, G. F. Yang, and Z. H. Jiang, Appl. Phys. Lett. 91, 051903 (2007).
http://dx.doi.org/10.1063/1.2757595
13.
13. G. M. Yang, S. M. Zhou, H. Lin, and H. Teng, Physica B 406, 3588 (2011).
http://dx.doi.org/10.1016/j.physb.2011.06.044
14.
14. Q. Y. Zhang, and X. Y. Huang, Prog. Mater. Sci. 55, 353 (2010).
http://dx.doi.org/10.1016/j.pmatsci.2009.10.001
15.
15. D. Serrano, A. Braud, P. Camy, J. L. Doualan, and R. Moncorgé, in Advances in Optical Materials, OSA Technical Digest (CD) (Optical Society of America, 2011), paper AIThC3.
16.
16. B. M. van der Ende, L. Aarts, and A. Meijerink, Adv. Mater. 21, 3073 (2009).
http://dx.doi.org/10.1002/adma.200802220
17.
17. K. Deng, X. Wei, X. Wang, Y. Chen, and M. Yin, Appl. Phys. B 102, 555 (2011).
http://dx.doi.org/10.1007/s00340-011-4413-7
18.
18. X. P. Chen, X. Y. Huang, and Q. Y. Zhang, J. Appl. Phys. 106, 063518 (2009).
http://dx.doi.org/10.1063/1.3224906
19.
19. D. Serrano, A. Braud, J. L. Doualan, P. Camy, and R. Moncorgé, J. Opt. Soc. Am. B 28, 1760 (2011).
http://dx.doi.org/10.1364/JOSAB.28.001760
20.
20. Y. Katayama, and S. Tanabe, Opt. Mater. 33, 176 (2010).
http://dx.doi.org/10.1016/j.optmat.2010.07.016
21.
21. E. van der Kolk, O. M. Ten Kate, J. W. Wiegman, D. Biner, and K. W. Krämer, Opt. Mater. 33, 1024 (2011).
http://dx.doi.org/10.1016/j.optmat.2010.08.010
22.
22. D. Serrano, A. Braud, J. L. Doualan, P. Camy, A. Benayad, V. Ménard, and R. Moncorgé, Opt. Mater. 33, 1028 (2011).
http://dx.doi.org/10.1016/j.optmat.2010.07.023
23.
23. B. M. van der Ende, L. Aarts, and A. Meijerink, Phys. Chem. Chem. Phys. 11, 11081 (2009).
http://dx.doi.org/10.1039/b913877c
24.
24. J. T. van Wijngaarden, S. Scheidelaar, T. J. H. Vlugt, M. F. Reid, and A. Meijerink, Phys. Rev. B 81, 155112 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.155112
25.
25. L. Aarts, B. van der Ende, M. F. Reid, and A. Meijerink, Spectrosc. Lett. 43, 373 (2010).
http://dx.doi.org/10.1080/00387010.2010.486731
26.
26. Y. S. Xu, X. H. Zhang, S. X. Dai, B. Fan, H. L. Ma, J. L. Adam, J. Ren, and G. R. Chen, J. Phys. Chem. 115, 13056 (2011).
http://dx.doi.org/10.1021/jp201503v
27.
27. H. Lin, X. H. Yan, and X. F. Wang, Mater. Sci. Eng. B 176, 1537 (2011).
http://dx.doi.org/10.1016/j.mseb.2011.09.020
28.
28. X. F. Liu, Y. B. Qiao, G. P. Dong, S. Ye, B. Zhu, G. Lakshminarayana, D. P. Chen, and J. R. Qiu, Opt. Lett. 33, 2858 (2008).
http://dx.doi.org/10.1364/OL.33.002858
29.
29. D. Q. Chen, Y. S. Wang, Y. L. Yu, P. Huang, and F. Y. Weng, Opt. Lett. 33, 1884 (2008).
http://dx.doi.org/10.1364/OL.33.001884
30.
30. J. Legendziewicz, J. Cybin´ska, M. Guzik, G. Boulon, and G. Meyer, Opt. Mater. 30, 1655 (2008).
http://dx.doi.org/10.1016/j.optmat.2007.11.005
31.
31. H. L. Wen and P. A. Tanner, Opt. Mater. 33, 1602 (2011).
http://dx.doi.org/10.1016/j.optmat.2011.04.024
32.
32. G. Alombert Goget, D. Ristic, A. Chiasera, S. Varas, M. Ferrari, G. C. Righini, B. Dieudonné, and B. Boulard, Proc. SPIE 8069, 80690N (2011).
http://dx.doi.org/10.1117/12.886789
33.
33. Donald A. Clugston, and Paul A. Basore, Proceedings of IEEE Conference on Photovoltaic Specialists (Institute of Electrical and Electronics Engineers, New York, 1997), pp. 504509.
34.
34. M. Federighi and F. Di Pasquale, IEEE Photonic. Technol. Lett. 7, 303 (1995).
http://dx.doi.org/10.1109/68.372753
35.
35. C. Jiang, and W. B. Xu, J. Display Technol. 5, 312 (2009).
http://dx.doi.org/10.1109/JDT.2009.2015895
36.
36. J. Wang, Y. H. Chen, and F. X. Gan, Acta Optica Sinica 16, 78 (1996).
37.
37. D. G. Kang, X. B. Chen, S. Li, J. S. Cui, Q. Cai, and B. T. Yu, Spectrosc. Spect. Anal. 27, 1 (2007).
38.
38. B. S. Richards, Sol. Energy Mater. Sol. Cells 90, 2329 (2006).
http://dx.doi.org/10.1016/j.solmat.2006.03.035
39.
39. J. J. Zhou, Y. Teng, S. Ye, G. Lin, and J. R. Qiu, Opt. Mater. 34, 901 (2012).
http://dx.doi.org/10.1016/j.optmat.2011.12.002
40.
40. B. C. Hong, and K. Kawano, Sol. Energy Mater. Sol. Cells 80, 417 (2003).
http://dx.doi.org/10.1016/j.solmat.2003.06.013
http://aip.metastore.ingenta.com/content/aip/journal/adva/2/4/10.1063/1.4766187
Loading

Figures

Image of FIG. 1.

Click to view

FIG. 1.

Energy level scheme and the DC mechanism for Pr3+-Yb3+ couple showing the QC process involved a two-step consecutive resonant ET.

Image of FIG. 2.

Click to view

FIG. 2.

(a) Pr3+ absorption band and incident solar spectrum for the calculation of overlap coefficient. (b) Normalized spectrum of the input solar light, and the inset: normalized solar energy spectrum.

Image of FIG. 3.

Click to view

FIG. 3.

The thickness of the spectral downconverter is fixed at 3mm. (a) Variation of PCE and QCE with Pr3+ concentration from 2.6×1026 ions/m3 to 4.0×1026 ions/m3. (b) Variation of PCE and QCE with Yb3+ concentration from 1.2×1026 ions/m3 to 3.8×1026 ions/m3.

Image of FIG. 4.

Click to view

FIG. 4.

Pr3+ and Yb3+ concentration are fixed at 1×1026 ions/m3. (a) Variation of PCE and QCE with the thickness of the spectral downconverter from 1mm to 10mm. (b) Variation of the total PCE and the total QCE with the thickness of the spectral downconverter from 0.5mm to 3mm.

Image of FIG. 5.

Click to view

FIG. 5.

Variation of the total output power density and the total output number of photons density with wavelength in the range of 200 nm-1100 nm.

Image of FIG. 6.

Click to view

FIG. 6.

(a) Schematic diagram of the optical configuration of the top covered spectral downconverter and sc-Si solar cell. (b) Schematic diagram of the interface between the top covered spectral downconverter and sc-Si solar cell.

Tables

Generic image for table

Click to view

Table I.

Primary parameters in the theoretical model.

Generic image for table

Click to view

Table II.

A sc-Si solar cell primary configuration and calculation parameters for PC1D.

Generic image for table

Click to view

Table III.

Simulated performance parameters of a sc-Si solar cell in PC1D.

Loading

Article metrics loading...

/content/aip/journal/adva/2/4/10.1063/1.4766187
2012-11-01
2014-04-18

Abstract

Quantum cutting via a two-step resonant energy transfer in a spectral downconverter of Pr3+-Yb3+ codoped fluoride glass is investigated numerically by proposing up and solving the theoretical model of rate equations and power propagation equations. Based on the optimal Pr3+-Yb3+ concentration and the thickness of the spectral downconverter, the total power conversion efficiency of 175% and total quantum conversion efficiency of 186% are obtained. The performance of a sc-Si solar cell covered with a spectral downconverter is evaluated with the photovoltaic simulation programme PC1D. For sc-Si solar cells, the energy conversion efficiency of 14.90% for the modified AM1.5G compared to a 12.25% energy conversion efficiency for the standard AM1.5G has been obtained, and the simulated relative energy conversion efficiency for the sc-Si solar cell approaches up to 1.21. Our results show that the use of a spectral downconverter yields better sc-Si solar cell performance compared to the standard AM1.5G irradiation. The paper also provides a framework for investigating and optimizing the rare-earth doped spectral downconverter, potentially enabling a sc-Si solar cell with an efficiency improvement.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/2/4/1.4766187.html;jsessionid=34h3hs9ht8it7.x-aip-live-01?itemId=/content/aip/journal/adva/2/4/10.1063/1.4766187&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Modeling of downconverter based on Pr3+-Yb3+ codoped fluoride glasses to improve sc-Si solar cells efficiency
http://aip.metastore.ingenta.com/content/aip/journal/adva/2/4/10.1063/1.4766187
10.1063/1.4766187
SEARCH_EXPAND_ITEM