1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Tunable photovoltaic effect and solar cell performance of self-doped perovskite SrTiO3
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/2/4/10.1063/1.4766279
1.
1. J. Nelson, The physics of solar cells (Imperial College press, London, 2003).
2.
2. A. Shah, P. Torres, R. Tscharner, N. Wyrsch, and H. Keppner, Science 285, 692 (1999).
http://dx.doi.org/10.1126/science.285.5428.692
3.
3. B. O’Regan and M. Graezel, Nature 353, 737 (1991).
http://dx.doi.org/10.1038/353737a0
4.
4. U. Bach, D. Lupo, P. Comte, J. E. Moser, F. Weissörtel, J. Salbeck, H. Spreitzer, and M. Grätzel, Nature 395, 583 (1998).
http://dx.doi.org/10.1038/26936
5.
5. M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. Yang, Nat. Mater. 4, 455 (2005).
http://dx.doi.org/10.1038/nmat1387
6.
6. A. K. K. Kyaw, X. W. Sun, J. L. Zhao, J. X. Wang, D. W. Zhao, X. F. Wei, X. W. Liu, H. V. Demir, and T. Wu, J. Phys. D - Appl. Phys. 44, 045102 (2011).
http://dx.doi.org/10.1088/0022-3727/44/4/045102
7.
7. A. K. K. Kyaw, H. Tantang, Q. Zhang, T. Wu, L. Ke, C. Peh, Z. H. Huang, X. T. Zeng, H. V. Demir, and X. W. Sun, Appl. Phys. Lett. 99, 021107 (2011).
http://dx.doi.org/10.1063/1.3610488
8.
8. A. K. K. Kyaw, H. Tantang, T. Wu, L. Ke, J. Wei, H. V. Demir, Q. C. Zhang, and X. W. Sun, J. Phys. D - Appl. Phys. 45, 165103 (2012).
http://dx.doi.org/10.1088/0022-3727/45/16/165103
9.
9. B. D. Yuhas and P. Yang, J. Am. Chem. Soc. 131, 3756 (2009).
http://dx.doi.org/10.1021/ja8095575
10.
10. T. Choi, S. Lee, Y. J. Choi, V. Kiryukhin, and S.-W. Cheong, Science 324, 63 (2009).
http://dx.doi.org/10.1126/science.1168636
11.
11. W. Ji, K. Yao, and Y. C. Liang, Adv. Mater. 22, 1763 (2010).
http://dx.doi.org/10.1002/adma.200902985
12.
12. S. Y. Yang, J. Seidel, S. J. Byrnes, P. Shafer, C.-H. Yang, M. D. Rossell, P. Yu, Y.-H. Chu, J. F. Scott, J. W. Ager III, L. W. Martin, and R. Ramesh, Nat. Nanotechnol. 5, 143 (2010).
http://dx.doi.org/10.1038/nnano.2009.451
13.
13. A. P. Ramirez, Science 315, 1377 (2007).
http://dx.doi.org/10.1126/science.1138578
14.
14. H. Chen, A. M. Kolpak, and S. Ismail-Beigi, Adv. Mater. 22, 2881 (2010).
http://dx.doi.org/10.1002/adma.200903800
15.
15. D. G. Schlom and J. Mannhart, Nat. Mater. 10, 168 (2011).
http://dx.doi.org/10.1038/nmat2965
16.
16. M. Kawasaki, K. Takahashi, T. Maeda, R. Tsuchiya, M. Shinohara, O. Ishiyama, T. Yonezawa, M. Yoshimoto, and H. Koinuma, Science 266, 1540 (1994).
http://dx.doi.org/10.1126/science.266.5190.1540
17.
17. J. H. Haeni, P. Irvin, W. Chang, R. Uecker, P. Reiche, Y. L. Li, S. Choudhury, W. Tian, M. E. Hawley, B. Craigo, A. K. Tagantsev, X. Q. Pan, S. K. Streiffer, L. Q. Chen, S. W. Kirchoefer, J. Levy, and D. G. Schlom, Nature 430, 758 (2004).
http://dx.doi.org/10.1038/nature02773
18.
18. R. Moos, W. Mcnesklou, and K. H. Hairdtl, Appl. Phys. A. 61, 389 (1995).
http://dx.doi.org/10.1007/BF01540113
19.
19. J. F. Schooley, W. R. Hosier, E. Ambler, and J. H. Becker, Phys. Rev. Lett. 14, 305 (1965).
http://dx.doi.org/10.1103/PhysRevLett.14.305
20.
20. K. Ueno, S. Nakamura, H. Shimotani, A. Ohtomo, N. Kimura, T. Nojima, H. Aoki, Y. Iwasa, and M. Kawasaki, Nat. Mater. 7, 855 (2008).
http://dx.doi.org/10.1038/nmat2298
21.
21. J. Xing, K. Zhao, H. B. Lu, X. Wang, G. Z. Liu, K. J. Jin, M. He, C. C. Wang, and G. Z. Yang, Opt. Lett. 32, 2526 (2007).
http://dx.doi.org/10.1364/OL.32.002526
22.
22. E.-J. Guo, H.-B. Lu, M. He, J. Xing, K.-J. Jin, and G.-Z. Yang, Appl. Opt. 49, 2557 (2010).
http://dx.doi.org/10.1364/AO.49.002557
23.
23. Y. Muraoka, T. Muramatsu, J. Yamaura, and Z. Hiroi, Appl. Phys. Lett. 85, 2950 (2004).
http://dx.doi.org/10.1063/1.1803616
24.
24. T. Muramatsu, Y. Muraoka, and Z. Hiroi, Jpn. J. Appl. Phys. 44, 7367 (2005).
http://dx.doi.org/10.1143/JJAP.44.7367
25.
25. D. Kan, T. Terashima, R. Kanda, A. Masuno, K. Tanaka, S. Chu, H. Kan, A. Ishizumi, Y. Kanemitsu, Y. Shimakawa, and M. Takano, Nat. Mater. 4, 816 (2005).
http://dx.doi.org/10.1038/nmat1498
26.
26. D. Kan, R. Kanda, Y. Kanemitsu, Y. Shimakawa, and M. Takano, T. Terashima, and A. Ishizumi, Appl. Phys. Lett. 88, 191916 (2006).
http://dx.doi.org/10.1063/1.2202750
27.
27. Q. N. Tufte and P. W. Chapman, Phys. Rev. 155, 796 (1967).
http://dx.doi.org/10.1103/PhysRev.155.796
28.
28. H. P. R. Frederikse, W. R. Hosler, W. R. Thurber, J. Babiskin, and P. G. Siebenmann, Phys. Rev. 158, 775 (1967).
http://dx.doi.org/10.1103/PhysRev.158.775
29.
29. K. Szot, W. Speier, R. Carius, U. Zastrow, and W. Beyer, Phys. Rev. Lett. 88, 075508 (2002).
http://dx.doi.org/10.1103/PhysRevLett.88.075508
30.
30. R. C. Neville and C. A. Mead, J. Appl. Phys. 43, 4657 (1972).
http://dx.doi.org/10.1063/1.1660984
31.
31. T. Shimizu and H. Okushi, J. Appl. Phys. 85, 7244 (1999).
http://dx.doi.org/10.1063/1.370539
32.
32. T. Susaki, Y. Kozuka, Y. Tateyama, and H. Y. Hwang, Phys. Rev. B 76, 155110 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.155110
33.
33. M. Mrovec, J.-M. Albina, B. Meyer, and C. Elsässer, Phys. Rev. B 79, 245121 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.245121
34.
34. M. Capizzi and A. Frova, Phys. Rev. Lett. 25, 1298 (1970).
http://dx.doi.org/10.1103/PhysRevLett.25.1298
35.
35. K. J. Jin, H. B. Lu, Q. L. Zhou, K. Zhao, B. L. Cheng, Z. H. Chen, Y. L. Zhou, and G. Z. Yang, Phys. Rev. B 71, 184428 (2005).
http://dx.doi.org/10.1103/PhysRevB.71.184428
36.
36. Q. L. Zhou, K. J. Jin, H. B. Lu, P. Han, Z. H. Chen, K. Zhao, Y. L. Zhou, and G. Z. Yang, Europhys. Lett. 71, 283 (2005).
http://dx.doi.org/10.1209/epl/i2005-10084-4
37.
37. Y. W. Chung and W. B. Weissbard, Phys. Rev. B 20, 3456 (1979).
http://dx.doi.org/10.1103/PhysRevB.20.3456
38.
38. T. Sakudo and H. Unoki, Phys. Rev. Lett. 26, 851 (1971).
http://dx.doi.org/10.1103/PhysRevLett.26.851
39.
39. L. Yang, S. Wang, Q. Zeng, Z. Zhang, T. Pei, Y. Li, and L. M. Peng, Nat. Photonics 5, 672 (2011).
http://dx.doi.org/10.1038/nphoton.2011.250
40.
40. M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, Nat. Mater. 9, 239 (2010).
http://dx.doi.org/10.1038/nmat2727
41.
41. X. Sheng, J. Liu, I. Kozinsky, A. M. Agarwal, J. Michel, and L. C. Kimerling, Adv. Mater. 23, 843 (2011).
http://dx.doi.org/10.1002/adma.201003217
42.
42. C. Battaglia, J. Escarré, K. Söderström, M. Charrière, M. Despeisse, F. Haug, and C. Ballif, Nat. Photonics 5, 535 (2011).
http://dx.doi.org/10.1038/nphoton.2011.198
43.
43. H. A. Atwater and A. Polman, Nat. Mater. 9, 205 (2010).
http://dx.doi.org/10.1038/nmat2629
http://aip.metastore.ingenta.com/content/aip/journal/adva/2/4/10.1063/1.4766279
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

(a) Temperature dependent sheet resistance data measured on STO single crystals annealed in vacuum at temperatures of 550 °C (S55), 650 °C (S65), 750 °C (S75), and 850 °C (S85). The resistance of the as-received STO substrate exceeds the measurement limit. The corresponding optical images of the reduced STO substrates are shown in the insets. Also illustrated is the atomic perovskite structure of STO, where the green, blue and red balls represent Sr, Ti and O atoms, respectively. (b) Semi-logarithmic plots of the room temperature current-voltage characteristics measured in various reduced STO samples both in the dark (dashed lines) and under UV light illumination. Inset shows the schematic of the Pt/STO/Al device.

Image of FIG. 2.

Click to view

FIG. 2.

Typical current-voltage curves measured at various temperatures (from 20 K to 300 K with a 20 K interval) under UV illumination in junctions made of (a) as-received STO single crystal, (b) S55 sample, (c) S75 sample and (d) S85 sample. The open-circuit voltage V OC (e) and the short-circuit current density J SC (f) as a function of the measurement temperature for junctions based on various reduced STO single crystals.

Image of FIG. 3.

Click to view

FIG. 3.

(a) Incident photon to charge carrier conversion efficiency (IPCE) spectra measured in the Pt/STO/Al devices made of the as-received and the reduced STO single crystals. (b) Optical absorption spectra of the samples. The inset highlights the significant enhancement of absorption intensity in the visible region (at 550 nm) as the reducing temperature increases.

Image of FIG. 4.

Click to view

FIG. 4.

(a) Schematic band structure of the Pt/STO/Al heterojunction. The PV effect occurs when the junction is irradiated by the light and the photo-excited electron/hole pairs are separated by the build-in field in the depletion layer. (b) Equivalent circuit which models the photoelectronic measurement processes in the junction.

Image of FIG. 5.

Click to view

FIG. 5.

Current-voltage curves of the Pt/STO/Al Schottky junction made of the S75 sample measured either in dark and under the illumination of a simulated solar light AM 1.5 (100 mW/cm2). The inset shows a scanning electron microscopy image of the device with interdigitated semitransparent Pt (left) and Al (right) electrodes.

Loading

Article metrics loading...

/content/aip/journal/adva/2/4/10.1063/1.4766279
2012-11-02
2014-04-17

Abstract

We report on the tunable photovoltaic effect of self-doped single-crystal SrTiO3 (STO), a prototypical perovskite-structured complex oxide, and evaluate its performance in Schottky junction solar cells. The photovaltaic characteristics of vacuum-reduced STO single crystals are dictated by a thin surface layer with electrons donated by oxygen vacancies. Under UVillumination, a photovoltage of 1.1 V is observed in the as-received STO single crystal, while the sample reduced at 750 °C presents the highest incident photon to carrier conversion efficiency. Furthermore, in the STO/Pt Schottky junction, a power conversion efficiency of 0.88% was achieved under standard AM 1.5 illumination at room temperature. This work establishes STO as a high-mobility photovoltaic semiconductor with potential of integration in self-powered oxide electronics.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/2/4/1.4766279.html;jsessionid=6vv1a7bsg8e7t.x-aip-live-02?itemId=/content/aip/journal/adva/2/4/10.1063/1.4766279&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Tunable photovoltaic effect and solar cell performance of self-doped perovskite SrTiO3
http://aip.metastore.ingenta.com/content/aip/journal/adva/2/4/10.1063/1.4766279
10.1063/1.4766279
SEARCH_EXPAND_ITEM