1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
oa
Effect of Co-doping on the resistivity and thermopower of SmFe1-xCoxAsO (0.0≤x≤0.3)
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/2/4/10.1063/1.4766936
1.
1. R. J. Cava, J. Am. Ceram. Soc. 83, 5 (2000).
http://dx.doi.org/10.1111/j.1151-2916.2000.tb01142.x
2.
2. M. K. Wu, J. R. Ashburn, C. J. Torng, P. H. Hor, R. L. Meng, L. Gao, Z. J. Huang, Y. Q. Wang, and C. W. Chu, Phys. Rev. Lett. 58, 908 (1987).
http://dx.doi.org/10.1103/PhysRevLett.58.908
3.
3. Y. Kamihara, T. Watanabe, M. Hirano, and H. Hosono, J. Am. Chem. Soc. 130, 3296 (2008).
http://dx.doi.org/10.1021/ja800073m
4.
4. I. I. Mazin, D. J. Singh, M. D. Johannes, and M. H. Du, Phys. Rev. Lett. 101, 057003 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.057003
5.
5. L. Boeri, O. V. Dolgov, and A. A. Golubov, Phys. Rev. Lett. 101, 026403 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.026403
6.
6. X. Dai, Z. Fang, Y. Zhou, and F. C. Zhang, Phys. Rev. Lett. 101, 057008 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.057008
7.
7. S. Raghu, X. L. Qi, C. X. Liu, D. J. Scalapino, and S. C. Zhang, Phys. Rev. B 77, 220503R (2008).
http://dx.doi.org/10.1103/PhysRevB.77.220503
8.
8. P. A. Lee and X. G. Wen, Phys. Rev. B 78, 144517 (2008).
http://dx.doi.org/10.1103/PhysRevB.78.144517
9.
9. Q. Si and E. Abrahams, Phys. Rev. Lett. 101, 076401 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.076401
10.
10. K. Kuroki, S. Onari, R. Arita, H. Usui, Y. Tanaka, H. Kontani, and H. Aoki, Phys. Rev. Lett. 101, 087004 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.087004
11.
11. C. de la Cruz, Q. Huang, J. W. Lynn, J. Li, W. Ratcliff II, H. A. Mook, G. F. Chen, J. L. Luo, N. L. Wang, and P. Dai, Nature (London) 453, 899 (2008).
http://dx.doi.org/10.1038/nature07057
12.
12. T. Nomura, S. W. Kim, Y. Kamihara, M. Hirano, P. V. Sushko, K. Kato, M. Takata, A. L. Shluger, and H. Hosono, Supercond. Sci. Technol. 21, 125028 (2008).
http://dx.doi.org/10.1088/0953-2048/21/12/125028
13.
13. J. Dong, H. J. Zhang, G. Xu, Z. Li, G. Li, W. Z. Hu, D. Wu, G. F. Chen, X. Dai, J. L. Luo, Z. Fang, and N. L. Wang, Europhys. Lett. 83, 27006 (2008).
http://dx.doi.org/10.1209/0295-5075/83/27006
14.
14. H. H. Wen, G. Mu, L. Fang, H. Yang, and X. Y. Zhu, Europhys. Lett. 82, 17009 (2008).
http://dx.doi.org/10.1209/0295-5075/82/17009
15.
15. X. H. Chen, T. Wu, G. Wu, R. H. Liu, H. Chen, and D. F. Fang, Nature (London) 453, 761 (2008).
http://dx.doi.org/10.1038/nature07045
16.
16. G. Xu, W. Ming, Y. Yao, X. Dai, S.-C. Zhang, and Z. Fang, Europhys. Lett. 82, 67002 (2008).
http://dx.doi.org/10.1209/0295-5075/82/67002
17.
17. Athena S. Sefat, Ashfia Huq, Michae A. McGuire, Rongying Jin, Brian C. Sales, David Mandrus, Lachlan M. D. Cranswick, Peter W. Stephens, and Kevin H. Stone, Phys. Rev. B 78, 104505 (2008).
http://dx.doi.org/10.1103/PhysRevB.78.104505
18.
18. H. Yanagi, R. Kawamura, T. Kamiya, Y. Kamihara, M. Hirano, T. Nakamura, H. Osawa, and H. Hosono, Phys. Rev. B 77, 224431 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.224431
19.
19. C. Wang, Y. K. Li, Z. W. Zhu, S. Jiang, X. Lin, Y. K. Luo, S. Chi, L. J. Li, Z. Ren, M. He, H. Chen, Y. T. Wang, Q. Tao, G. H. Cao, and Z. A. Xu, Phys. Rev. B 79, 054521 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.054521
20.
20. L.-D. Zhao, D. Berardan, C. Byl, L. Pinsard-Gaudart, and N. Dragoe, J. Phys.: Condens. Matter 22, 115701 (2010).
http://dx.doi.org/10.1088/0953-8984/22/11/115701
21.
21. Y. Qi, Z. Gao, L. Wang, D. Wang, X. Zhang, and Y. Ma, Supercond. Sci. Technol. 21, 115016 (2008).
http://dx.doi.org/10.1088/0953-2048/21/11/115016
22.
22. V. P. S. Awana, Anand Pal, Arpita Vajpayee, R. S. Meena, H. Kishan, Mushahid Husain, R. Zeng, S. Yu, K. Yamaura, and E. Takayama-Muromachi, J. Appl. Phys. 107, 09E146 (2010).
http://dx.doi.org/10.1063/1.3366601
23.
23. J. Prakash, S. J. Singh, S. Patnaik, and A. K. Ganguli, Solid State Commun. 149, 181 (2009).
http://dx.doi.org/10.1016/j.ssc.2008.11.028
24.
24. V. P. S. Awana, A. Vajpayee, A. Pal, M. Mudgel, R. S. Meena, and H. Kishan, J. Supercond. Novel Magn. 22, 623 (2009).
http://dx.doi.org/10.1007/s10948-009-0498-1
25.
25. G. Long, M. DeMarco, M. Chudyk, J. Steiner, D. Coffey, H. Zeng, Y. K. Li, G. H. Cao, and Z. A. Xu, Phys. Rev. B 84, 064423 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.064423
26.
26. M. Majumder, K. Ghoshray, A. Ghoshray, B. Bandyopadhyay, B. Pahari, and S. Banerjee, Phys. Rev. B 80, 212402 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.212402
27.
27. H. Ohta and K. Yoshimura, Phys. Rev. B 79, 184407 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.184407
28.
28. Michael A. McGuire, Delphine J. Gout, V. Ovidiu Garlea, Athena S. Sefat, Brian C. Sales, and David Mandrus, Phys. Rev. B 81, 104405 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.104405
29.
29. Andrea Marcinkova, David A. M. Grist, Irene Margiolaki, Thomas C. Hansen, Serena Margadonna, and Jan-Willem G. Bos, Phys. Rev. B 81, 064511 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.064511
30.
30. V. P. S. Awana, I. Nowik, Anand Pal, K. Yamaura, E. Takayama-Muromachi, and I. Felner, Phys. Rev. B 81, 212501 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.212501
31.
31. H. Ohta, C. Michioka, A. Matsuo, K. Kindo, and K. Yoshimura, Phys. Rev. B 82, 054421 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.054421
32.
32. C. Krellner, U. Burkhardt, and C. Geibel, Physica B 404, 3206 (2009).
http://dx.doi.org/10.1016/j.physb.2009.07.046
33.
33. G. F. Chen, Z. Li, D. Wu, G. Li, W. Z. Hu, J. Dong, P. Zheng, J. L. Luo, and N. L. Wang, Phys. Rev. Lett. 100, 247002 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.247002
34.
34. Z. A. Ren, W. Lu, J. Yang, W. Yi, X. L. Shen, Z. C. Li, G. C. Che, X. L. Dong, L. L. Sun, F. Zhou, and Z. X. Zhao, Chin. Phys. Lett. 25, 2215 (2008).
http://dx.doi.org/10.1088/0256-307X/25/6/080
35.
35. Z. A. Ren, J. Yang, W. Lu, W. Yi, X. L. Shen, Z. C. Li, G. C. Che, X. L. Dong, L. L. Sun, F. Zhou, and Z. X. Zhao, Europhys. Lett. 83, 17002 (2008).
http://dx.doi.org/10.1209/0295-5075/83/17002
36.
36. H. Kito, H. Eisaki, and A. Iyo, J. Phys. Soc. Jpn. 77, 063707 (2008).
http://dx.doi.org/10.1143/JPSJ.77.063707
37.
37. C. Wang, L. J. Li, S. Chi, Z. W. Zhu, Z. Ren, Y. K. Li, Y. T. Wang, X. Lin, Y. K. Luo, S. Jiang, X. F. Xu, G. H. Cao, and Z. A. Xu, Europhys. Lett. 83, 67006 (2008).
http://dx.doi.org/10.1209/0295-5075/83/67006
38.
38. Eun Deok Mun, Sergey L. Bud'ko, Ni Ni, Alex N. Thaler, and Paul C. Canfield, Phys. Rev. B 80, 054517 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.054517
39.
39. C. Liu, T. Kondo, Rafael M. Fernandes, Ari D. Palczewski, Eun Deok Mun, Ni Ni, Alexander N. Thaler, Aaron Bostwick, Eli Rotenberg, Jörg Schmalian, Sergey L. Bud'ko, Paul C. Canfield, and Adam Kaminski, Nature Phys. 6, 419 (2010).
http://dx.doi.org/10.1038/nphys1656
40.
40. D. J. Singh and M.-H. Du, Phys. Rev. Lett. 100, 237003 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.237003
41.
41. A. Soni and G. S. Okram, Rev. Sci. Instrum. 79, 125103 (2008).
http://dx.doi.org/10.1063/1.3048545
42.
42. L. Wang, U. Köheler, N. Leps, A. Kondrat, M. Nale, A. Gasparini, A. de Visser, G. Behr, C. Hess, R. Klingeler, and B. Büchner, Phys. Rev. B 80, 094512 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.094512
43.
43. M. A. McGuire, A. D. Christianson, A. S. Sefat, B. C. Sales, M. D. Lumsden, R. Jin, E. A. Payzant, D. Mandrus, Y. Luan, V. Keppens, V. Varadarajan, J. W. Brill, R. P. Hermann, M. T. Sougrati, F. Grandjean, and G. J. Long, Phys. Rev. B 78, 094517 (2008).
http://dx.doi.org/10.1103/PhysRevB.78.094517
44.
44. H.-H. Klauss, H. Luetkens, R. Klingeler, C. Hess, F. J. Litterst, M. Kraken, M. M. Korshunov, I. Eremin, S.-L. Drechsler, R. Khasanov, A. Amato, J. Hamann-Borrero, N. Leps, A. Kondrat, G. Behr, J. Werner, and B. Büchner, Phys. Rev. Lett. 101, 077005 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.077005
45.
45. A. Leithe-Jasper, W. Schnelle, C. Geibel, and H. Rosner, Phys. Rev. Lett. 101, 207004 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.207004
46.
46. S. R. Saha, N. P. Butch, K. Kirshenbaum, and Johnpierre Paglione, Phys. Rev. B 79, 224519 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.224519
47.
47. G. Mu, L. Fang, H. Yang, X. Zhu, P. Cheng, and H.-H. Wen, J. Phys. Soc. Jpn. 77, 15 (2008).
http://dx.doi.org/10.1143/JPSJS.77SC.15
48.
48. Gang Mu, Bin Zeng, Xiyu Zhu, Fei Han, Peng Cheng, Bing Shen, and Hai-Hu Wen, Phys. Rev. B 79, 104501 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.104501
49.
49. M. Rotter, M. Tegel, and D. Johrendt, Phys. Rev. Lett. 101, 107006 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.107006
50.
50. R. D. Barnard, Thermoelectricity in metals and alloys (Taylor and Francis, London, 1972).
51.
51. J. L. Cohn, S. A. Wolf, V. Selvamanickam, and K. Salama, Phys. Rev. Lett. 66, 1098 (1991).
http://dx.doi.org/10.1103/PhysRevLett.66.1098
52.
52. N. Kaurav, Y. T. Chung, Y. K. Kuo, R. S. Liu, T. S. Chan, J. M. Chen, J.-F. Lee, H.-S. Sheu, X. L. Wang, S. X. Dou, S. I. Lee, Y. G. Shi, A. A. Belik, K. Yamaura, and E. Takayama-Muromachi, Appl. Phys. Lett. 94, 192507 (2009).
http://dx.doi.org/10.1063/1.3136764
53.
53. K. Kihou, C. H. Lee, K. Miyazawa, P. M. Shirage, A. Iyo, and H. Eisaki, Appl. Phys. Lett. 94, 192507 (2009).
http://dx.doi.org/10.1063/1.3136764
54.
54. Yayu Wang, Nyrissa S. Rogado, R. J. Cava, and N. P. Ong, Nature 423, 425 (2003).
http://dx.doi.org/10.1038/nature01639
55.
55. S. D. Obertelli, J. R. Cooper, and J. L. Tallon, Phys. Rev. B 46, 14928 (1992).
http://dx.doi.org/10.1103/PhysRevB.46.14928
56.
56. J. L. Tallon, C. Bernhard, H. Shaked, R. L. Hitterman, and J. D. Jorgensen, Phys. Rev. B 51, 12911 (1995).
http://dx.doi.org/10.1103/PhysRevB.51.12911
http://aip.metastore.ingenta.com/content/aip/journal/adva/2/4/10.1063/1.4766936
Loading
/content/aip/journal/adva/2/4/10.1063/1.4766936
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/2/4/10.1063/1.4766936
2012-11-05
2014-10-31

Abstract

We report structure, electrical resistivity and thermopower of polycrystalline SmFe1-x Co x AsO samples for 0.0 ≤ x ≤ 0.3. The XRD data revealed full Co substitution at Fe-site with slight compression of the unit cell. Resistivity data showed that the spin-density wave observed at 130 K for x = 0 is suppressed when x = 0.05, above which superconductivity emerges due to injection of mobile electrons, supporting the substitution of Co3+ at Fe2+ site but disappears for x = 0.3. The thermopower (S) data indicate that the majority of charge carriers is electron-like and its value reaches −81 μV/K (at 300 K) for x = 0.3. Noticeable deviations from the expected linear behavior in S(T) at low temperatures and S/T against temperature curves at intermediate temperatures were observed. These observations were interpreted on the basis of nested Fermi surface and Umklapp processes.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/2/4/1.4766936.html;jsessionid=1cs4c3eyse638.x-aip-live-03?itemId=/content/aip/journal/adva/2/4/10.1063/1.4766936&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Effect of Co-doping on the resistivity and thermopower of SmFe1-xCoxAsO (0.0≤x≤0.3)
http://aip.metastore.ingenta.com/content/aip/journal/adva/2/4/10.1063/1.4766936
10.1063/1.4766936
SEARCH_EXPAND_ITEM