1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Electronic and optical properties of vacancy-doped WS2 monolayers
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/2/4/10.1063/1.4768261
1.
1. A. K. Geim, Science 324, 15301534 (2009).
http://dx.doi.org/10.1126/science.1158877
2.
2. A. K. Geim and K. S. Novoselov, Nat. Mater. 6, 183191 (2007).
http://dx.doi.org/10.1038/nmat1849
3.
3. H. S. S. R. Matte, A. Gomathi, A. K. Manna, D. J. Late, R. Datta, S. K. Pati, and C. N. R. Rao, Angew. Chem. Int. Ed. 49, 40594062 (2010).
http://dx.doi.org/10.1002/anie.201000009
4.
4. Z. Liu, K. Suenaga, Z. Wang, Z. Shi, E. Okunishi, and S. Iijima, Nat. Commun. 2, 213 (2011).
http://dx.doi.org/10.1038/ncomms1224
5.
5. K. S. Nagapriya, O. Goldbart, I. Kaplan-Ashiri, G. Seifert, R. Tenne, and E. Joselevich, Phys. Rev. Lett. 101, 195501 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.195501
6.
6. Y. Q. Zhu, T. Sekine, K. S. Brigatti, S. Firth, R. Tenne, R. Rosentsveig, H. W. Kroto, and D. R. M. Walton, J. Am. Chem. Soc. 125, 13291333 (2003).
http://dx.doi.org/10.1021/ja021208i
7.
7. M. Remskar, M. Virsek, and A. Jesih, Nano Lett. 8, 7680 (2008).
http://dx.doi.org/10.1021/nl0719426
8.
8. L. Rapoport, N. Fleischer, and R. Tenne, Adv. Mater. 15, 651655 (2003).
http://dx.doi.org/10.1002/adma.200301640
9.
9. R. Tenne, L. Margulis, M. Genut, and G. Hodes, Nature 360, 444446 (1992).
http://dx.doi.org/10.1038/360444a0
10.
10. A. Rothschild, J. Sloan, and R. Tenne, J. Am. Chem. Soc. 122, 51695179 (2000).
http://dx.doi.org/10.1021/ja994118v
11.
11. C. N. R. Rao and A. Govindaraj, Adv. Mater. 21, 42084233 (2009).
http://dx.doi.org/10.1002/adma.200803720
12.
12. M. Sun, A. E. Nelson, and J. Adjaye, J. Catal. 226, 4153 (2004).
http://dx.doi.org/10.1016/j.jcat.2004.04.023
13.
13. A. Rothschild, S. R. Cohen, and R. Tenne, Appl. Phys. Lett. 75, 40254027 (1999).
http://dx.doi.org/10.1063/1.125526
14.
14. M. Thomalla and H. Tributsch, J. Phys. Chem. B 110, 1216712171 (2006).
http://dx.doi.org/10.1021/jp061371q
15.
15. A. Klein, S. Tiefenbacher, V. Eyert, C. Pettenkofer, and W. Jaegermann, Phys. Rev. B 64, 205416 (2001).
http://dx.doi.org/10.1103/PhysRevB.64.205416
16.
16. K. Albe and A. Klein, Phys. Rev. B 66, 073413 (2002).
http://dx.doi.org/10.1103/PhysRevB.66.073413
17.
17. Z. Wang, K. Zhao, H. Li, Z. Liu, Z. Shi, J. Lu, K. Suenaga, S.-K. Joung, T. Okazaki, Z. Jin, Z. Gu, Z. Gao, and S. Iijima, J. Mater. Chem. 21, 171180 (2011).
http://dx.doi.org/10.1039/c0jm02821e
18.
18. Z. Wang, H. Li, Z. Liu, Z. Shi, J. Lu, K. Suenaga, S.-K. Joung, T. Okazaki, Z. Gu, J. Zhou, Z. Gao, G. Li, S. Sanvito, E. Wang, and S. Iijima, J. Am. Chem. Soc. 132, 1384013847 (2010).
http://dx.doi.org/10.1021/ja1058026
19.
19. P. Ordejón, E. Artacho, and J. Soler, Phys. Rev. B 53, R10441R10444 (1996).
http://dx.doi.org/10.1103/PhysRevB.53.R10441
20.
20. J. M. Soler, E. Artacho, J. D. Gale, A. García, J. Junquera, P. Ordejón, and D. Sánchez-Portal, J. Phys.: Condens. Matter 14, 27452779 (2002).
http://dx.doi.org/10.1088/0953-8984/14/11/302
21.
21. M. C. Payne, M. P. Teter, D. C. Allan, T. A. Arias, and J. D. Joannopoulos, Rev. Mod. Phys. 64, 10451097 (1992).
http://dx.doi.org/10.1103/RevModPhys.64.1045
22.
22. http://www.tcm.phy.cam.ac.uk/castep/documentation/WebHelp/Html/thCastepOpticalProps.htm. The whole optical calculations are carried out by the CASTEP codes with the theories of the site.
23.
23. C. Ambrosch-Draxl, J. Majewski, P. Vogl, and G. Leising, Phys. Rev. B 51, 96689676 (1995).
http://dx.doi.org/10.1103/PhysRevB.51.9668
24.
24. A. Read and R. Needs, Phys. Rev. B 44, 1307113073 (1991).
http://dx.doi.org/10.1103/PhysRevB.44.13071
25.
25. D. Vanderbilt, Phys. Rev. B 41, 78927895 (1990).
http://dx.doi.org/10.1103/PhysRevB.41.7892
26.
26. V. Petkov, S. J. L. Billinge, J. Heising, and M. G. Kanatzidis, J. Am. Chem. Soc. 122, 1157111576 (2000).
http://dx.doi.org/10.1021/ja002048i
27.
27. Y. Ma, Y. Dai, M. Guo, C. Niu, J. Lu, and B. Huang, Phys. Chem. Chem. Phys. 13, 1554615553 (2011).
http://dx.doi.org/10.1039/c1cp21159e
28.
28. W. J. Schutte, J. L. De Boer, and F. Jellinek, J. Solid State Chem. 70, 207209 (1987).
http://dx.doi.org/10.1016/0022-4596(87)90057-0
29.
29. R. Levi, M. Bar-Sadan, A. Albu-Yaron, R. Popovitz-Biro, L. Houben, Y. Prior, and R. Tenne, Materials 3, 44284445 (2010).
http://dx.doi.org/10.3390/ma3084428
http://aip.metastore.ingenta.com/content/aip/journal/adva/2/4/10.1063/1.4768261
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

Typical representation of the WS2 layered structure. The blue spheres represent the W atoms, the yellow spheres the S atoms, and the sticks the W-S bonds.

Image of FIG. 2.

Click to view

FIG. 2.

The spin-up/down band structures of WS2 with and without defects. For comparison, the band structures of pristine WS2 are also given and labeled as Pr. The Fermi energy is set to zero. The wave vector K ranges from Γ (0 0 0) to X (0 0.5 0) in each panel. The black arrows point to the enlargement of the corresponding α, β, γ and γ subbands.

Image of FIG. 3.

Click to view

FIG. 3.

The projected density of states (PDOS) of the WS2 layer with defects. (a) and (b) are the semicore shells of the VS2 and VW models. The results of the VS1 model is almost the same as the VS2 model, except for some minor differences of 3s semicore shells of the S atoms in the conduction and valence bands. As a consequence, the data are not shown here. The Fermi energy is set to zero.

Image of FIG. 4.

Click to view

FIG. 4.

(a), (b) and (c) Isosurfaces of the charge density difference of the spin-up and spin-down states of the VW, VS1 and VS2 defects, respectively. Red surfaces indicate the spin-up bands and the blue surfaces the spin-down bands. (d) The charge density of the A-B-A plane in Fig. 1. The centers of the two upper circles indicate the S atoms and the lower circle the W atom.

Image of FIG. 5.

Click to view

FIG. 5.

Absorption spectra of M-WS2 with and without atomic defects. The curve of pristine WS2 is also given for comparison. The inset is an enlargement of the absorption spectrum around 100 nm. The results are calculated based on unpolarized incident light perpendicular to the M-WS2 plane. The dashed line indicates the peak position of the pristine layer.

Loading

Article metrics loading...

/content/aip/journal/adva/2/4/10.1063/1.4768261
2012-11-12
2014-04-23

Abstract

Monolayers of tungsten disulfide doped with atomic vacancies have been investigated for the first time by density functional theory calculations. The results reveal that the atomic vacancy defects affect the electronic and optical properties of the tungsten disulfide monolayers. The strongly ionic character of the W-S bonds and the non-bonding electrons of the vacancy defects result in spin polarization near the defects. Moreover, the spin polarization of single W atomic vacancies has a larger range than for one or two S atomic vacancies. In particular, increased intensity of absorption and red shift of optical absorption are universally observed in the presence of these atomic defects, which are shown to be a fundamental factor in determining the spin transport and optical absorption of tungsten disulfide monolayers.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/2/4/1.4768261.html;jsessionid=3b2r3tsg8lm1h.x-aip-live-02?itemId=/content/aip/journal/adva/2/4/10.1063/1.4768261&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Electronic and optical properties of vacancy-doped WS2 monolayers
http://aip.metastore.ingenta.com/content/aip/journal/adva/2/4/10.1063/1.4768261
10.1063/1.4768261
SEARCH_EXPAND_ITEM