1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Loop-mirror-based slot waveguide refractive index sensor
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/2/4/10.1063/1.4768266
1.
1. Almeida, V. R. , Xu, Q. F. , Barrios, C. A. , and Lipson, M. , “Guiding and confining light in void nanostructure,” Opt. Lett. 29, 12091211 (2004).
http://dx.doi.org/10.1364/OL.29.001209
2.
2. Xu, Q. F. , Almeida, V. R. , Panepucci, R. R. , and Lipson, M. , “Experimental demonstration of guiding and confining light in nanometer-size low-refractive-index material,” Opt. Lett. 29, 16261628 (2004).
http://dx.doi.org/10.1364/OL.29.001626
3.
3. Kou, J.-l. , Xu, F. , and Lu, Y.-q. , “Highly Birefringent Slot-Microfiber,” IEEE Photon. Technol. Lett. 23, 10341036 (2011).
http://dx.doi.org/10.1109/LPT.2011.2144578
4.
4. Kou, J.-l. , Guo, W. , Xu, F. , and Lu, Y.-q. , “Highly Birefringent Optical-Fiberized Slot Waveguide for Miniature Polarimetric Interference Sensors: A Proposal,” IEEE Sensors J. 12, 16811685 (2012).
http://dx.doi.org/10.1109/JSEN.2011.2177521
5.
5. Barrios, C. A. , Sanchez, B. , Gylfason, K. B. , Griol, A. , Sohlstrom, H. , Holgado, M. , and Casquel, R. , “Demonstration of slot-waveguide structures on silicon nitride / silicon oxide platform,” Opt. Express 15, 68466856 (2007).
http://dx.doi.org/10.1364/OE.15.006846
6.
6. Koos, C. , Vorreau, P. , Vallaitis, T. , Dumon, P. , Bogaerts, W. , Baets, R. , Esembeson, B. , Biaggio, I. , Michinobu, T. , Diederich, F. , Freude, W. , and Leuthold, J. , “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photon. 3, 216219 (2009).
http://dx.doi.org/10.1038/nphoton.2009.25
7.
7. Yang, A. H. J. , Moore, S. D. , Schmidt, B. S. , Klug, M. , Lipson, M. , and Erickson, D. , “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457, 7175 (2009).
http://dx.doi.org/10.1038/nature07593
8.
8. Pandey, S. , Kumar, G. , and Nahata, A. , “Slot waveguide-based splitters for broadband terahertz radiation,” Opt. Express 18, 2346623471 (2010).
http://dx.doi.org/10.1364/OE.18.023466
9.
9. Feng, N.-N. , Sun, R. , Michel, J. , and Kimerling, L. C. , “Low-loss compact-size slotted waveguide polarization rotator and transformer,” Opt. Lett. 32, 21312133 (2007).
http://dx.doi.org/10.1364/OL.32.002131
10.
10. Barrios, C. A. , Gylfason, K. B. , Sanchez, B. , Griol, A. , Sohlstroem, H. , Holgado, M. , and Casquel, R. , “Slot-waveguide biochemical sensor,” Opt. Lett. 32, 30803082 (2007).
http://dx.doi.org/10.1364/OL.32.003080
11.
11. Angulo Barrios, C. , “Optical Slot-Waveguide Based Biochemical Sensors,” Sensors 9, 47514765 (2009).
http://dx.doi.org/10.3390/s90604751
12.
12. Dell’Olio, F. and Passaro, V. M. N. , “Optical sensing by optimized silicon slot waveguides,” Opt. Express 15, 49774993 (2007).
http://dx.doi.org/10.1364/OE.15.004977
13.
13. Bettotti, P. , Pitanti, A. , Rigo, E. , De Leonardis, F. , Passaro, V. M. N. , and Pavesi, L. , “Modeling of Slot Waveguide Sensors Based on Polymeric Materials,” Sensors 11, 73277340 (2011).
http://dx.doi.org/10.3390/s110807327
14.
14. Barrios, C. A. , Banuls, M. J. , Gonzalez-Pedro, V. , Gylfason, K. B. , Sanchez, B. , Griol, A. , Maquieira, A. , Sohlstrom, H. , Holgado, M. , and Casquel, R. , “Label-free optical biosensing with slot-waveguides,” Opt. Lett. 33, 708710 (2008).
http://dx.doi.org/10.1364/OL.33.000708
15.
15. Yang, S.-H. , Cooper, M. L. , Bandaru, P. R. , and Mookherjea, S. , “Giant birefringence in multi-slotted silicon nanophotonic waveguides,” Opt. Express 16, 83068316 (2008).
http://dx.doi.org/10.1364/OE.16.008306
16.
16. Kou, J.-l. , Wang, Q. , Yu, Z.-y. , Xu, F. , and Lu, Y.-q. , “Broadband and highly efficient quadratic interactions in double-slot lithium niobate waveguides through phase matching,” Opt. Lett. 36, 25332535 (2011).
http://dx.doi.org/10.1364/OL.36.002533
17.
17. Mortimore, D. B. , “Fiber loop reflectors,” IEEE J. Lightwave Technol. 6, 12171224 (1988).
http://dx.doi.org/10.1109/50.4119
18.
18. Passaro, V. , Dell’Olio, F. , Ciminelli, C. , and Armenise, M. , “Efficient Chemical Sensing by Coupled Slot SOI Waveguides,” Sensors 9, 10121032 (2009).
http://dx.doi.org/10.3390/s90201012
19.
19. Passaro, V. , Dell’Olio, F. , Casamassima, B. , and De Leonardis, F. , “Guided-Wave Optical Biosensors,” Sensors 7, 508536 (2007).
http://dx.doi.org/10.3390/s7040508
http://aip.metastore.ingenta.com/content/aip/journal/adva/2/4/10.1063/1.4768266
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

Schematic of the loop-mirror-based slot waveguide sensor. The light is launched in through Port A in z-direction and received at Port B. The green, yellow and blue part is the substrate, silicon waveguide and slot, respectively. Other parameters are labeled in the picture.

Image of FIG. 2.

Click to view

FIG. 2.

Cross sectional electric field distribution of the slot waveguide with the fundamental quasi-TE mode. nanalyte, nsilicon and nsilica denotes the refractive index of the immediate medium to be sensed, silicon and silica substrate with white solid line indicating the boundary of different materials. h, p and Wslot is the height, width of the silicon rib and width of the slot, respectively. The mode field is calculated at p = 200 nm, h = 400 nm and Wslot = 50 nm with the yellow arrow denoting the polarization direction.

Image of FIG. 3.

Click to view

FIG. 3.

Birefringence of the slot waveguide as a function of the width of the slot with analyte chosen to be (a) air and (b) water. (c) Birefringence of the slot waveguide as a function of nanalyte for two fixed geometric configurations. Lines of different colors represent slot waveguide with different geometric parameters as indicated in Fig. 2. All calculations are performed at p = 200 nm and telecom wavelength 1550 nm.

Image of FIG. 4.

Click to view

FIG. 4.

Sanalyte exploiting the principle of birefringence as a function of Wslot when the LMSW is immersed in different ambient analyte, (a) for air and (b) for water. Sensitivity exploiting the principle of evanescent field as a function of Wslot when the LMSW is immersed in different ambient analyte, (c) and (e) for air, (d) and (f) for water. (c) and (d) represent quasi-TE mode while (e) and (f) represent quasi-TM mode. The blue, green, red and black lines are plotted when h equals 300 nm, 350 nm, 400 nm and 450 nm, respectively. All calculations are performed at p = 200 nm and telecom wavelength 1550 nm.

Loading

Article metrics loading...

/content/aip/journal/adva/2/4/10.1063/1.4768266
2012-11-12
2014-04-18

Abstract

Loop mirror has been widely used in fiber optical devices and systems for it provides a smart way to make use of the fiber birefringence properties and can enhance the sensitivity greatly. On the other hand, slot waveguide is very promising for optical sensing applications because of their peculiar spatial mode profile. In this paper, we propose and analyze a loop-mirror-based slot waveguide (LMSW) sensor which can be routinely fabricated in modern high-volume complementary metal-oxide–semiconductor (CMOS) process. The finite element method (FEM) simulation results show that the birefringence can be as high as 0.8 which is orders of magnitude than that in conventional birefringent fiber loop mirror. High sensitivity up to 6 × 103 nm/RIU (refractive index unit) is achieved by this scheme.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/2/4/1.4768266.html;jsessionid=23rvfkj10snum.x-aip-live-06?itemId=/content/aip/journal/adva/2/4/10.1063/1.4768266&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Loop-mirror-based slot waveguide refractive index sensor
http://aip.metastore.ingenta.com/content/aip/journal/adva/2/4/10.1063/1.4768266
10.1063/1.4768266
SEARCH_EXPAND_ITEM