1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
First-principles study on the differences of possible ferroelectric behavior and magnetic exchange interaction between Bi2NiMnO6 and La2NiMnO6
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/2/4/10.1063/1.4768268
1.
1. J. Wang, J. B. Neaton, H. Zheng, V. Nagarajan, S. B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D. G. Schlom, U. V. Waghmare, N. A. Spaldin, K. M. Rabe, M. Wuttig, and R. Ramesh, Science 299, 1719 (2003).
http://dx.doi.org/10.1126/science.1080615
2.
2. S. W. Cheong and M. Mostovoy, Nat. Mater. 6, 13 (2007).
http://dx.doi.org/10.1038/nmat1804
3.
3. R. Ramesh and N. A. Spaldin, Nat. Mater. 6, 21 (2007).
http://dx.doi.org/10.1038/nmat1805
4.
4. N. A. Hill, J. Phys. Chem. B 104, 6694 (2000).
http://dx.doi.org/10.1021/jp000114x
5.
5. N. A. Hill and A. Filippetti, J. Magn. Magn. Mater. 242, 976 (2002).
http://dx.doi.org/10.1016/S0304-8853(01)01078-2
6.
6. T. Atou, H. Chiba, K. Ohoyama, Y. Yamaguchi, and Y. Syono, J. Solid State Chem. 145, 639 (1999).
http://dx.doi.org/10.1006/jssc.1999.8267
7.
7. A. Moreira dos Santos, A. K. Cheetham, A. Atou, Y. Syono, Y. Yamaguchi, K. Ohoyama, H. Chiba, and C. N. R. Rao, Phys. Rev. B 66, 064425 (2002).
http://dx.doi.org/10.1103/PhysRevB.66.064425
8.
8. R. V. Shpanchenko, V. V. Chernaya, A. A. Tsirlin, P. S. Chizhov, D. E. Sklovsky, E. V. Antipov, E. P. Khlybov, V. Pomjakushin, A. M. Balagurov, J. E. Medvedeva, E. E. Kaul, and C. Geibel, Chem. Mater. 16, 3267 (2004).
http://dx.doi.org/10.1021/cm049310x
9.
9. A. A. Belik, M. Azuma, T. Saito, Y. Shimakawa, and M. Takano, Chem. Mater. 17, 269 (2005).
http://dx.doi.org/10.1021/cm048387i
10.
10. K. Takata, M. Azuma, Y. Shimakawa, and M. Takano, J. Jpn. Soc. Powder Powder Metal. 52, 913 (2005).
http://dx.doi.org/10.2497/jjspm.52.913
11.
11. M. Azuma, K. Takata, T. Saito, S. Ishiwata, Y. Shimakawa, and M. Takano, J. Am. Chem. Soc. 127, 8889 (2005).
http://dx.doi.org/10.1021/ja0512576
12.
12. R. Seshadri and N. A. Hill, Chem. Mater. 13, 2892 (2001).
http://dx.doi.org/10.1021/cm010090m
13.
13. P. Ravindran, R. Vidya, A. Kjekshus, and H. Fjellvåg, Phys. Rev. B 74, 224412 (2006).
http://dx.doi.org/10.1103/PhysRevB.74.224412
14.
14. S. J. Clark and J. Robertson, Appl. Phys. Lett. 90, 132903 (2007).
http://dx.doi.org/10.1063/1.2716868
15.
15. J. B. Goodenough, Phys. Rev. 100, 564 (1955).
http://dx.doi.org/10.1103/PhysRev.100.564
16.
16. J. J. Kanamori, Phys. Chem. Solids 10, 87 (1959).
http://dx.doi.org/10.1016/0022-3697(59)90061-7
17.
17. R. J. Booth, R. Fillman, H. Whitaker, A. Nag, R. M. Tiwari, R. V. Ramanujachary, J. Gopalakrishnan, and S. E. Lofland, Mater. Res. Bull. 44, 1559 (2009).
http://dx.doi.org/10.1016/j.materresbull.2009.02.003
18.
18. H. Das, U. V. Waghmare, T. Saha-Dasgupta, and D. D. Sarma, Phys. Rev. Lett. 100, 186402 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.186402
19.
19. N. S. Rogado, J. Li, A. W. Sleight, and M. A. Subramanian, Adv. Mater. 17, 2225 (2005).
http://dx.doi.org/10.1002/adma.200500737
20.
20. A. Ciucivara, B. Sahu, and L. Kleinman, Phys. Rev. B 76, 064412 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.064412
21.
21. Y. Uratani, T. Shishidou, F. Ishii, and T. Oguchi, Physica B 383, 9 (2006).
http://dx.doi.org/10.1016/j.physb.2006.03.035
22.
22. H. J. Zhao, X. Q. Liu, and X. M. Chen, AIP Advances 2, 022115 (2012).
http://dx.doi.org/10.1063/1.4709401
23.
23. K. Dewhurst, S. Sharma, L. Nordstr¨om, F. Cricchio, F. Bultmark, and H. Gross, ELK, version 1.2.20, a package of ab initio programs, 2011, see http://elk.sourceforge.net.
24.
24. J. P. Perdew and Y. Wang, Phys. Rev. B 45, 13244 (1992).
http://dx.doi.org/10.1103/PhysRevB.45.13244
25.
25. A. I. Liechtenstein, V. I. Anisimov, and J. Zaanen, Phys. Rev. B 52, R5467 (1995).
http://dx.doi.org/10.1103/PhysRevB.52.R5467
26.
26. E. Artacho, J. D. Gale, A. García, J. Junquera, P. Ordejón, D. Śanchez-Portal, and J. M. Soler, verson 3.0-rc2, see http://www.icmab.es/siesta.
27.
27. J. M. Soler, E. Artacho, J. D. Gale, A. García, J. Junquera, P. Ordejón, and D. Sánchez-Portal, J. Phys.: Condens. Matter 14, 2745 (2002).
http://dx.doi.org/10.1088/0953-8984/14/11/302
28.
28. E. Artacho, E. Anglada, O. Diéguez, J. D. Gale, A. García, J. Junquera, R. M. Martin, P. Ordejón, J. M. Pruneda, D. Sánchez-Portal, and J. M. Soler, J. Phys.: Condens. Matter 20, 064208 (2008).
http://dx.doi.org/10.1088/0953-8984/20/6/064208
29.
29. W. Z. Yang, X. Q. Liu, Y. Q. Lin, and X. M. Chen, J. Appl. Phys. 111, 084106 (2012).
http://dx.doi.org/10.1063/1.4704392
30.
30. R. E. Cohen, Nature 358, 136 (1992).
http://dx.doi.org/10.1038/358136a0
31.
31. A. Roy, S. Mukherjee, R. Gupta, S. Auluck, R. Prasad, and A. Garg, J. Phys.: Condens. Matter 23, 325902 (2011).
http://dx.doi.org/10.1088/0953-8984/23/32/325902
32.
32. A. H. Morrish, The Physical Principles of Magnetism (John Wiley & Sons, New York, London, Sydney, 1965).
33.
33. S. Lv, H. Li, X. Liu, D. Han, Z. Wu, and J. Meng, J. Phys. Chem. C 114, 16710 (2010).
http://dx.doi.org/10.1021/jp104617q
34.
34. P. Padhan, P. LeClair, A. Gupta, and G. Srinivasan, J. Phys.: Condens. Matter 20, 355003 (2008).
http://dx.doi.org/10.1088/0953-8984/20/35/355003
35.
35. M. Sakai, A. Masuno, D. Kan, M. Hashisaka, K. Takata, M. Azuma, M. Takano, and Y. Shimakawa, Appl. Phys. Lett. 90, 072903 (2007).
http://dx.doi.org/10.1063/1.2539575
36.
36. P. Baettig, C. Ederer, and N. A. Spaldin, Phys. Rev. B 72, 214105 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.214105
37.
37. H. Das, U. V. Waghmare, T. Saha-Dasgupta, and D. D. Sarma, Phys. Rev. B 79, 144403 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.144403
38.
38. N. Ikeda, H. Ohsumi, K. Ohwada, K. Ishii, T. Inami, K. Kakurai, Y. Murakami, K. Yoshii, S. Mori, Y. Horibe, and H. Kitô, Nature 436, 1136 (2005).
http://dx.doi.org/10.1038/nature04039
39.
39. K. Momma and F. Izumi, J. Appl. Crystallogr. 41, 653 (2008).
http://dx.doi.org/10.1107/S0021889808012016
http://aip.metastore.ingenta.com/content/aip/journal/adva/2/4/10.1063/1.4768268
Loading

Figures

Image of FIG. 1.

Click to view

FIG. 1.

Partial density of states for La-5d, Bi-6p and O-2p orbitals in P21/n La2NiMnO6 (olive solid line) and Bi2NiMnO6 (violet dash line).

Image of FIG. 2.

Click to view

FIG. 2.

The electron localization function plot of La2NiMnO6 (a) and Bi2NiMnO6 (b) at isosurface value of 0.2 a.u.

Image of FIG. 3.

Click to view

FIG. 3.

Schematic description of Ni-Mn exchange interaction via virtual hopping from Ni-e g orbitals to Mn-e g orbitals. The calculated energy level of Ni-3d and Mn-3d orbitals in Ref. 37 is taken as a reference. The solid arrow shows the occupied majority (↑) or minority (↓) spin states, the dash arrow shows the unoccupied majority or minority spin states. The crystal field splitting and exchange splitting for Ni-3d and Mn-3d orbitals are shown as ΔE CF and ΔE EX, respectively.

Image of FIG. 4.

Click to view

FIG. 4.

Total density of states for P21/n La2NiMnO6, P21/n Bi2NiMnO6 and C2 Bi2NiMnO6.

Image of FIG. 5.

Click to view

FIG. 5.

(a) Partial density of states of Ni-3d and Mn-3d orbitals for ferromagnetic (blue line) and ferrimagnetic (violet line) C2 Bi2NiMnO6; (b) Charge density difference (e/Bohr3) plot between ferromagnetic and ferrimagnetic C2 Bi2NiMnO6.

Tables

Generic image for table

Click to view

Table I.

Born effective charges (diagonal elements) of ferromagnetic P21/n La2NiMnO6 and Bi2NiMnO6. The acoustic sum rule Σ kZ* k can be achieved within 0.05, indicating the convergency of the computation.

Generic image for table

Click to view

Table II.

Energy gaps E g , exchange parameters J Ni-Mn, Curie temperature T C and structural parameters of La2NiMnO6 and Bi2NiMnO6.

Generic image for table

Click to view

Table III.

Born effective charges (diagonal elements) of Bi, Ni, Mn, and O atoms in ferroelectric monoclinic Bi2NiMnO6 with ferromagnetic and ferrimagnetic order. The acoustic sum rule Σ kZ* k can be achieved within 0.05, indicating the convergency of the computation.

Loading

Article metrics loading...

/content/aip/journal/adva/2/4/10.1063/1.4768268
2012-11-13
2014-04-23

Abstract

The differences of possible ferroelectric behavior and magnetic exchange interaction between Bi2NiMnO6 and La2NiMnO6 have been investigated by first-principles calculation. Paying attention to the electronic structures, bonding interaction, and Born effective charges of the two compounds, the calculations reveal that ferroelectric distortion occurs only in Bi2NiMnO6 rather than La2NiMnO6. The calculation also indicates that the Ni-Mn ferromagneticexchange interaction is weakened in Bi2NiMnO6 compared with that in La2NiMnO6. Thus the present work explains why Bi2NiMnO6 has a lower Curie temperature compared with La2NiMnO6. The mechanism why Bi2NiMnO6 has weaker Ni-Mn ferromagneticexchange interaction than La2NiMnO6 is explored by considering the Kugel-Khomskii model. Finally, the electric polarizations of Bi2NiMnO6 with ferromagnetic and ferrimagnetic order are estimated to be 18.05 and 19.01 μC/cm2, respectively, indicating the anomaly of electric polarization near the Curie temperature of Bi2NiMnO6.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/2/4/1.4768268.html;jsessionid=1cmfohb1lxa5o.x-aip-live-01?itemId=/content/aip/journal/adva/2/4/10.1063/1.4768268&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: First-principles study on the differences of possible ferroelectric behavior and magnetic exchange interaction between Bi2NiMnO6 and La2NiMnO6
http://aip.metastore.ingenta.com/content/aip/journal/adva/2/4/10.1063/1.4768268
10.1063/1.4768268
SEARCH_EXPAND_ITEM