Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. J. Wang, J. B. Neaton, H. Zheng, V. Nagarajan, S. B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D. G. Schlom, U. V. Waghmare, N. A. Spaldin, K. M. Rabe, M. Wuttig, and R. Ramesh, Science 299, 1719 (2003).
2. S. W. Cheong and M. Mostovoy, Nat. Mater. 6, 13 (2007).
3. R. Ramesh and N. A. Spaldin, Nat. Mater. 6, 21 (2007).
4. N. A. Hill, J. Phys. Chem. B 104, 6694 (2000).
5. N. A. Hill and A. Filippetti, J. Magn. Magn. Mater. 242, 976 (2002).
6. T. Atou, H. Chiba, K. Ohoyama, Y. Yamaguchi, and Y. Syono, J. Solid State Chem. 145, 639 (1999).
7. A. Moreira dos Santos, A. K. Cheetham, A. Atou, Y. Syono, Y. Yamaguchi, K. Ohoyama, H. Chiba, and C. N. R. Rao, Phys. Rev. B 66, 064425 (2002).
8. R. V. Shpanchenko, V. V. Chernaya, A. A. Tsirlin, P. S. Chizhov, D. E. Sklovsky, E. V. Antipov, E. P. Khlybov, V. Pomjakushin, A. M. Balagurov, J. E. Medvedeva, E. E. Kaul, and C. Geibel, Chem. Mater. 16, 3267 (2004).
9. A. A. Belik, M. Azuma, T. Saito, Y. Shimakawa, and M. Takano, Chem. Mater. 17, 269 (2005).
10. K. Takata, M. Azuma, Y. Shimakawa, and M. Takano, J. Jpn. Soc. Powder Powder Metal. 52, 913 (2005).
11. M. Azuma, K. Takata, T. Saito, S. Ishiwata, Y. Shimakawa, and M. Takano, J. Am. Chem. Soc. 127, 8889 (2005).
12. R. Seshadri and N. A. Hill, Chem. Mater. 13, 2892 (2001).
13. P. Ravindran, R. Vidya, A. Kjekshus, and H. Fjellvåg, Phys. Rev. B 74, 224412 (2006).
14. S. J. Clark and J. Robertson, Appl. Phys. Lett. 90, 132903 (2007).
15. J. B. Goodenough, Phys. Rev. 100, 564 (1955).
16. J. J. Kanamori, Phys. Chem. Solids 10, 87 (1959).
17. R. J. Booth, R. Fillman, H. Whitaker, A. Nag, R. M. Tiwari, R. V. Ramanujachary, J. Gopalakrishnan, and S. E. Lofland, Mater. Res. Bull. 44, 1559 (2009).
18. H. Das, U. V. Waghmare, T. Saha-Dasgupta, and D. D. Sarma, Phys. Rev. Lett. 100, 186402 (2008).
19. N. S. Rogado, J. Li, A. W. Sleight, and M. A. Subramanian, Adv. Mater. 17, 2225 (2005).
20. A. Ciucivara, B. Sahu, and L. Kleinman, Phys. Rev. B 76, 064412 (2007).
21. Y. Uratani, T. Shishidou, F. Ishii, and T. Oguchi, Physica B 383, 9 (2006).
22. H. J. Zhao, X. Q. Liu, and X. M. Chen, AIP Advances 2, 022115 (2012).
23. K. Dewhurst, S. Sharma, L. Nordstr¨om, F. Cricchio, F. Bultmark, and H. Gross, ELK, version 1.2.20, a package of ab initio programs, 2011, see
24. J. P. Perdew and Y. Wang, Phys. Rev. B 45, 13244 (1992).
25. A. I. Liechtenstein, V. I. Anisimov, and J. Zaanen, Phys. Rev. B 52, R5467 (1995).
26. E. Artacho, J. D. Gale, A. García, J. Junquera, P. Ordejón, D. Śanchez-Portal, and J. M. Soler, verson 3.0-rc2, see
27. J. M. Soler, E. Artacho, J. D. Gale, A. García, J. Junquera, P. Ordejón, and D. Sánchez-Portal, J. Phys.: Condens. Matter 14, 2745 (2002).
28. E. Artacho, E. Anglada, O. Diéguez, J. D. Gale, A. García, J. Junquera, R. M. Martin, P. Ordejón, J. M. Pruneda, D. Sánchez-Portal, and J. M. Soler, J. Phys.: Condens. Matter 20, 064208 (2008).
29. W. Z. Yang, X. Q. Liu, Y. Q. Lin, and X. M. Chen, J. Appl. Phys. 111, 084106 (2012).
30. R. E. Cohen, Nature 358, 136 (1992).
31. A. Roy, S. Mukherjee, R. Gupta, S. Auluck, R. Prasad, and A. Garg, J. Phys.: Condens. Matter 23, 325902 (2011).
32. A. H. Morrish, The Physical Principles of Magnetism (John Wiley & Sons, New York, London, Sydney, 1965).
33. S. Lv, H. Li, X. Liu, D. Han, Z. Wu, and J. Meng, J. Phys. Chem. C 114, 16710 (2010).
34. P. Padhan, P. LeClair, A. Gupta, and G. Srinivasan, J. Phys.: Condens. Matter 20, 355003 (2008).
35. M. Sakai, A. Masuno, D. Kan, M. Hashisaka, K. Takata, M. Azuma, M. Takano, and Y. Shimakawa, Appl. Phys. Lett. 90, 072903 (2007).
36. P. Baettig, C. Ederer, and N. A. Spaldin, Phys. Rev. B 72, 214105 (2005).
37. H. Das, U. V. Waghmare, T. Saha-Dasgupta, and D. D. Sarma, Phys. Rev. B 79, 144403 (2009).
38. N. Ikeda, H. Ohsumi, K. Ohwada, K. Ishii, T. Inami, K. Kakurai, Y. Murakami, K. Yoshii, S. Mori, Y. Horibe, and H. Kitô, Nature 436, 1136 (2005).
39. K. Momma and F. Izumi, J. Appl. Crystallogr. 41, 653 (2008).

Data & Media loading...


Article metrics loading...



The differences of possible ferroelectric behavior and magnetic exchange interaction between Bi2NiMnO6 and La2NiMnO6 have been investigated by first-principles calculation. Paying attention to the electronic structures, bonding interaction, and Born effective charges of the two compounds, the calculations reveal that ferroelectric distortion occurs only in Bi2NiMnO6 rather than La2NiMnO6. The calculation also indicates that the Ni-Mn ferromagneticexchange interaction is weakened in Bi2NiMnO6 compared with that in La2NiMnO6. Thus the present work explains why Bi2NiMnO6 has a lower Curie temperature compared with La2NiMnO6. The mechanism why Bi2NiMnO6 has weaker Ni-Mn ferromagneticexchange interaction than La2NiMnO6 is explored by considering the Kugel-Khomskii model. Finally, the electric polarizations of Bi2NiMnO6 with ferromagnetic and ferrimagnetic order are estimated to be 18.05 and 19.01 μC/cm2, respectively, indicating the anomaly of electric polarization near the Curie temperature of Bi2NiMnO6.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd