1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
A graphene composed of pentagons and octagons
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/2/4/10.1063/1.4768669
1.
1. A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, Rev. Mod. Phys. 81, 109 (2009).
http://dx.doi.org/10.1103/RevModPhys.81.109
2.
2. S. Chandratre and P. Sharma, Appl. Phys. Lett. 100, 023114 (2012).
http://dx.doi.org/10.1063/1.3676084
3.
3. Q. Li, Y. Ma, A. R. Oganov, H. Wang, H. Wang, Y. Xu, T. Cui, H. K. Mao, and G. Zou, Phys. Rev. Lett. 102,175506 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.175506
4.
4. K. Umemoto, R. M. Wentzcovitch, S. Saito, and T. Miyake, Phys. Rev. Lett. 104, 125504 (2010).
http://dx.doi.org/10.1103/PhysRevLett.104.125504
5.
5. C. J. Pickard and R. J. Needs, Phys. Rev. B 81,014106 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.014106
6.
6. J.-T. Wang, C. Chen, and Y. Kawazoe, Phys. Rev. Lett. 106, 075501 (2011).
http://dx.doi.org/10.1103/PhysRevLett.106.075501
7.
7. X.-L. Sheng, Q. B. Yan, F. Ye, Q. R. Zheng, and G. Su, Phys. Rev. Lett. 106, 155703 (2011).
http://dx.doi.org/10.1103/PhysRevLett.106.155703
8.
8. J.-T. Wang, C. Chen, and Y. Kawazoe, Phys. Rev. B 85, 033410 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.033410
9.
9. Q. Zhu, A. R. Oganov, M. A. Salvado, P. Pertierra, and A. O. Lyakhov, Phys. Rev. B 83, 193410 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.193410
10.
10. D. Malko, C. Neiss, F. Vi˜nes, and A. Görling, Phys. Rev. Lett. 108, 086804 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.086804
11.
11. P. Hohenberg and W. Kohn, Phys. Rev. B 136, 864 (1964).
http://dx.doi.org/10.1103/PhysRev.136.B864
12.
12. M. Levy, Proc. Natl. Acad. Sci. U. S. A. 76, 6062 (1979).
http://dx.doi.org/10.1073/pnas.76.12.6062
13.
13. M. D. Segall, P. L. D. Lindan, M. J. Probert, C. J. Pickard, P. J. Hasnip, S. J. Clark, and M. C. Payne, J. Phys.: Condens. Matter. 14, 2717 (2002).
http://dx.doi.org/10.1088/0953-8984/14/11/301
14.
14. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
http://dx.doi.org/10.1103/PhysRevLett.77.3865
15.
15. D. Vanderbilt, Phys. Rev. B 41, 7892 (1990).
http://dx.doi.org/10.1103/PhysRevB.41.7892
16.
16. D. M. Ceperley and B. J. Alder, Phys. Rev. Lett. 45, 566 (1980).
http://dx.doi.org/10.1103/PhysRevLett.45.566
17.
17. A. Seidl, A. Gorling, P. Vogl, J. A. Majewski, and M. Levy, Phys. Rev. B 53, 3764 (1996).
http://dx.doi.org/10.1103/PhysRevB.53.3764
18.
18. B. G. Pfrommer, M. Cote, S. G. Louie, and M. L. Cohen, J. Comput. Phys. 131, 133 (1997).
http://dx.doi.org/10.1006/jcph.1996.5612
19.
19. A. M. Rappe, K. M. Rabe, E. Kaxiras, and J. D. Joannopoulos, “Optimized pseudopotentials,” Phys. Rev. B 41, 122730 (1990).
http://dx.doi.org/10.1103/PhysRevB.41.1227
20.
20. J. S. Lin, A. Qteish, M. C. Payne, and V. Heine, Phys. Rev. B 47, 4174 (1993).
http://dx.doi.org/10.1103/PhysRevB.47.4174
21.
21. G. Kresse and J. Furthmuller, Phys. Rev. B 54, 11169 (1996).
http://dx.doi.org/10.1103/PhysRevB.54.11169
22.
22. M. C. Payne, M. P. Teter, D. C. Allan, T. A. Arias, and J. D. Joannopoulos, Rev. Mod. Phys. 64, 1045 (1992).
http://dx.doi.org/10.1103/RevModPhys.64.1045
23.
23. A. J. Stone and D. J. Wales, Chem. Phys. Lett. 128, 501 (1986).
http://dx.doi.org/10.1016/0009-2614(86)80661-3
24.
24. V. H. Crespi, L. X. Benedict, M. L. Cohen, and S. G. Louie, Phys. Rev. B 53, R13303 (1996).
http://dx.doi.org/10.1103/PhysRevE.53.R13
25.
25. E. Kaxiras and K. C. Pandey, Phys. Rev. Lett. 61, 2693 (1988).
http://dx.doi.org/10.1103/PhysRevLett.61.2693
26.
26. G. D. Lee, C. Z. Wang, and E. Yoon, Phys. Rev. Lett. 95, 205501 (2005).
http://dx.doi.org/10.1103/PhysRevLett.95.205501
27.
27. Ç. Ö. Girit et al., Science 323, 1705 (2009).
http://dx.doi.org/10.1126/science.1166999
28.
28. Y. Kim, J. Ihm, E. Yoon, and G.-D. Lee, Phys. Rev. B 84, 075445 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.075445
29.
29. J. Kotakoski, A. V. Krasheninnikov, U. Kaiser, and J. C. Meyer, Phys. Rev. Lett. 106, 105505 (2011).
http://dx.doi.org/10.1103/PhysRevLett.106.105505
30.
30. J. Kotakoski, J. C. Meyer, S. Kurasch, D. Santos-Cottin, U. Kaiser, and A. V. Krasheninnikov, Phys. Rev. B 83, 245420 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.245420
31.
31. J. Lahiri, Y. Lin, P. Bozkurt, I. I. Oleynik, and M. Batzill, Nat. Nanotechnol 5, 326329 (2010).
http://dx.doi.org/10.1038/nnano.2010.53
http://aip.metastore.ingenta.com/content/aip/journal/adva/2/4/10.1063/1.4768669
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

(a): The structure of PO-graphene. A primitive cell is marked with a blue rhombus. (b): The contour plot of the electron density. (c): The Brillouin zone of the PO-graphene. (d): The ordinary graphene with atoms to be deleted marked in yellow to show the periodic defects.

Image of FIG. 2.

Click to view

FIG. 2.

The phonon band structure of PO-graphene.

Image of FIG. 3.

Click to view

FIG. 3.

(a) Electronic band structure and PDOS calculated with GGA. Two bands near the Fermi surface are marked with red curves. (b) The contour maps of two bands near the Fermi surface.

Image of FIG. 4.

Click to view

FIG. 4.

Real (black solid curve) and imaginary (red dashed curve) parts of optical conductivity as a function of frequency. The polarization of light is along the direction AB marked with P∥AB and along CD marked with P∥CD.

Image of FIG. 5.

Click to view

FIG. 5.

Real (black solid curve) and imaginary (red dashed curve) parts of dielectric function varying with frequency. The polarization of light is along the direction AB marked with P∥AB and along CD marked with P∥CD.

Loading

Article metrics loading...

/content/aip/journal/adva/2/4/10.1063/1.4768669
2012-11-20
2014-04-21

Abstract

We report a possible stable structure of graphene on basis of the first principle calculation. This possible two-dimensional (2D) structure consists of pentagons and octagons (PO), and likely be formed from ordinary graphene by periodically inserting specific defects. Its density is 2.78 Atom/Å2 and the cohesive energy per atom is −8.96 eV, slightly higher than that of graphene. The calculation indicates that PO-graphene behaves like a 2D anisotropic metal. The dispersion relation of electrons near the Fermi surface shows a significant flat segment along a direction and linear behavior in different regions of the Brillouin zone. If the growth of samples is successful, the PO-graphene not only be used as anisotropy conductor and other practical application, but also can be served as a good sample for experiments which need 2D anisotropic materials.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/2/4/1.4768669.html;jsessionid=3444bp92in4n8.x-aip-live-01?itemId=/content/aip/journal/adva/2/4/10.1063/1.4768669&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: A graphene composed of pentagons and octagons
http://aip.metastore.ingenta.com/content/aip/journal/adva/2/4/10.1063/1.4768669
10.1063/1.4768669
SEARCH_EXPAND_ITEM