1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
oa
Transient photoreflectance of AlInN/GaN heterostructures
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/2/4/10.1063/1.4768670
1.
1. A. Pinos, V. Liuolia, S. Marcinkevičius, J. Yang, R. Gaska, and M. S. Shur, J. Appl. Phys. 109, 113516 (2011).
http://dx.doi.org/10.1063/1.3594239
2.
2. A. Kaneta, M. Funato, and Y. Kawakami, Phys. Rev. B 78, 125317 (2008).
http://dx.doi.org/10.1103/PhysRevB.78.125317
3.
3. V. Liuolia, A. Pinos, S. Marcinkevičius, Y. D. Lin, H. Ohta, S. P. DenBaars, and S. Nakamura, Appl. Phys. Lett. 97, 151106 (2010).
http://dx.doi.org/10.1063/1.3502482
4.
4. S. Yamaguchi, M. Kariya, S. Nitta, T. Takeuchi, C. Wetzel, H. Amano, and I. Akasaki, Appl. Phys. Lett. 76, 876 (2000).
http://dx.doi.org/10.1063/1.125615
5.
5. R. Butté, J.-F. Carlin, E. Feltin, M. Gonschorek, S. Nicolay, G. Christmann, D. Simeonov, A. Castiglia, J. Dorsaz, H. J. Buehlmann, S. Christopoulos, G. Baldassarri Höger von Högersthal, A. J. D. Grundy, M. Mosca, C. Pinquier, M. A. Py, F. Demangeot, J. Frandon, P. G. Lagoudakis, J. J. Baumberg, and N. Grandjean, J. Phys. D: Appl. Phys. 40, 6328 (2007).
http://dx.doi.org/10.1088/0022-3727/40/20/S16
6.
6. V. Liuolia, S. Marcinkevičius, D. Billingsley, M. Shatalov, J. Yang, R. Gaska, and M. S. Shur, Appl. Phys. Lett. 100, 242104 (2012).
http://dx.doi.org/10.1063/1.4729033
7.
7. F. Hitzel, G. Klewer, S. Lahmann, U. Rossow, and A. Hangleiter, Phys. Rev. B 72, 081309R (2005).
http://dx.doi.org/10.1103/PhysRevB.72.081309
8.
8. A. Mouti, J.-L. Rouvière, M. Cantoni, J.-F. Carlin, E. Feltin, N. Grandjean, and P. Stadelmann, Phys. Rev. B 83, 195309 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.195309
9.
9. A. Pinos, S. Marcinkevičius, M. Usman, and A. Hallén, Appl. Phys. Lett. 95, 112108 (2009).
http://dx.doi.org/10.1063/1.3226108
10.
10. A. Minj, D. Cavalcoli, and A. Cavallini, Appl. Phys. Lett. 97, 132114 (2010).
http://dx.doi.org/10.1063/1.3489433
11.
11. A. Pinos, S Marcinkevičius, J. Yang, R. Gaska, M. Shatalov, and M. S. Shur, J. Appl. Phys. 108, 093113 (2010).
http://dx.doi.org/10.1063/1.3506697
12.
12. A. Pinos, S Marcinkevičius, and M. S. Shur, J. Appl. Phys. 109, 103108 (2011).
http://dx.doi.org/10.1063/1.3590149
13.
13. I. Gorczyca, S. P. Łepkowski, T. Suski, N. E. Christensen, and A. Svane, Phys. Rev. B 80, 075202 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.075202
14.
14. T. Onuma, S. F. Chichibu, Y. Uchinuma, T. Sota, S. Yamaguchi, S. Kamiyama, H. Amano, and I. Akasaki, J. Appl. Phys. 94, 2449 (2003).
http://dx.doi.org/10.1063/1.1592868
15.
15. D. Billingsley, J. Yang, R. Gaska, and M. Shur, J. Cryst. Growth 327, 98 (2011).
http://dx.doi.org/10.1016/j.jcrysgro.2011.06.015
16.
16. E. Sakalauskas, H. Behmenburg, C. Hums, P. Schley, G. Rossbach, C. Giesen, M. Heuken, H. Kalisch, R. H. Jansen, J. Bläsing, A. Dadgar, A. Krost, and R. Goldhahn, J. Phys. D: Appl. Phys. 43, 365102 (2010).
http://dx.doi.org/10.1088/0022-3727/43/36/365102
17.
17. M. Wraback and H. Shen, Proc. SPIE 4650, 84 (2002).
http://dx.doi.org/10.1117/12.467652
18.
18. J.-F. Roux, J.-L. Coutaz, and A. Krotkus, Appl. Phys. Lett. 74, 2462 (1999).
http://dx.doi.org/10.1063/1.123881
19.
19. B. R. Bennett, R. A. Soref, and J. A. del Alamo, IEEE J. Quantum Electron. 26, 113 (1990).
http://dx.doi.org/10.1109/3.44924
20.
20. U. Siegner, R. Fluck, G. Zhang, and U. Keller, Appl. Phys. Lett. 69, 2566 (1998).
http://dx.doi.org/10.1063/1.117701
21.
21. A. Krotkus, K. Bertulis, M. Kaminska, K. Korona, A. Wolos, J. Siegert, S. Marcinkevičius, J.-F. Roux, and J.-L. Coutaz, IEE Proc. Optoelectron. 149, 111 (2002).
http://dx.doi.org/10.1049/ip-opt:20020435
22.
22. Y. D. Glinka, N. H. Tolk, X. Liu, Y. Sasaki, and J. K. Furdyna, J. Appl. Phys. 103, 043708 (2008).
http://dx.doi.org/10.1063/1.2840139
23.
23. R. Liu, G. D. Sanders, C. J. Stanton, C. S. Kim, J. S. Yahng, Y. D. Jho, K. J. Yee, E. Oh, and D. S. Kim, Phys. Rev. B 72, 195335 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.195335
http://aip.metastore.ingenta.com/content/aip/journal/adva/2/4/10.1063/1.4768670
Loading
/content/aip/journal/adva/2/4/10.1063/1.4768670
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/2/4/10.1063/1.4768670
2012-11-20
2014-10-25

Abstract

Time-resolved photoreflectance (PR) in AlInN/GaN heterostructures was applied to study carrier dynamics at energies extending from the uniform AlInN alloy band gap to the band gap of GaN. PR at the AlInN band gap has been found to have subpicosecond decay. Such ultrafast carrier relaxation from the extended to the sub-band edge states implies that the localization sites are small and dense, most probably originating from the In-rich clusters. At energies below the AlInN band gap, a complicated energy dependence of the PR signal is attributed to the properties of the localized states and to the modulation of the interface electric field by photoexcitation.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/2/4/1.4768670.html;jsessionid=23i2o5j51r851.x-aip-live-02?itemId=/content/aip/journal/adva/2/4/10.1063/1.4768670&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Transient photoreflectance of AlInN/GaN heterostructures
http://aip.metastore.ingenta.com/content/aip/journal/adva/2/4/10.1063/1.4768670
10.1063/1.4768670
SEARCH_EXPAND_ITEM