1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Transient photoreflectance of AlInN/GaN heterostructures
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/2/4/10.1063/1.4768670
1.
1. A. Pinos, V. Liuolia, S. Marcinkevičius, J. Yang, R. Gaska, and M. S. Shur, J. Appl. Phys. 109, 113516 (2011).
http://dx.doi.org/10.1063/1.3594239
2.
2. A. Kaneta, M. Funato, and Y. Kawakami, Phys. Rev. B 78, 125317 (2008).
http://dx.doi.org/10.1103/PhysRevB.78.125317
3.
3. V. Liuolia, A. Pinos, S. Marcinkevičius, Y. D. Lin, H. Ohta, S. P. DenBaars, and S. Nakamura, Appl. Phys. Lett. 97, 151106 (2010).
http://dx.doi.org/10.1063/1.3502482
4.
4. S. Yamaguchi, M. Kariya, S. Nitta, T. Takeuchi, C. Wetzel, H. Amano, and I. Akasaki, Appl. Phys. Lett. 76, 876 (2000).
http://dx.doi.org/10.1063/1.125615
5.
5. R. Butté, J.-F. Carlin, E. Feltin, M. Gonschorek, S. Nicolay, G. Christmann, D. Simeonov, A. Castiglia, J. Dorsaz, H. J. Buehlmann, S. Christopoulos, G. Baldassarri Höger von Högersthal, A. J. D. Grundy, M. Mosca, C. Pinquier, M. A. Py, F. Demangeot, J. Frandon, P. G. Lagoudakis, J. J. Baumberg, and N. Grandjean, J. Phys. D: Appl. Phys. 40, 6328 (2007).
http://dx.doi.org/10.1088/0022-3727/40/20/S16
6.
6. V. Liuolia, S. Marcinkevičius, D. Billingsley, M. Shatalov, J. Yang, R. Gaska, and M. S. Shur, Appl. Phys. Lett. 100, 242104 (2012).
http://dx.doi.org/10.1063/1.4729033
7.
7. F. Hitzel, G. Klewer, S. Lahmann, U. Rossow, and A. Hangleiter, Phys. Rev. B 72, 081309R (2005).
http://dx.doi.org/10.1103/PhysRevB.72.081309
8.
8. A. Mouti, J.-L. Rouvière, M. Cantoni, J.-F. Carlin, E. Feltin, N. Grandjean, and P. Stadelmann, Phys. Rev. B 83, 195309 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.195309
9.
9. A. Pinos, S. Marcinkevičius, M. Usman, and A. Hallén, Appl. Phys. Lett. 95, 112108 (2009).
http://dx.doi.org/10.1063/1.3226108
10.
10. A. Minj, D. Cavalcoli, and A. Cavallini, Appl. Phys. Lett. 97, 132114 (2010).
http://dx.doi.org/10.1063/1.3489433
11.
11. A. Pinos, S Marcinkevičius, J. Yang, R. Gaska, M. Shatalov, and M. S. Shur, J. Appl. Phys. 108, 093113 (2010).
http://dx.doi.org/10.1063/1.3506697
12.
12. A. Pinos, S Marcinkevičius, and M. S. Shur, J. Appl. Phys. 109, 103108 (2011).
http://dx.doi.org/10.1063/1.3590149
13.
13. I. Gorczyca, S. P. Łepkowski, T. Suski, N. E. Christensen, and A. Svane, Phys. Rev. B 80, 075202 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.075202
14.
14. T. Onuma, S. F. Chichibu, Y. Uchinuma, T. Sota, S. Yamaguchi, S. Kamiyama, H. Amano, and I. Akasaki, J. Appl. Phys. 94, 2449 (2003).
http://dx.doi.org/10.1063/1.1592868
15.
15. D. Billingsley, J. Yang, R. Gaska, and M. Shur, J. Cryst. Growth 327, 98 (2011).
http://dx.doi.org/10.1016/j.jcrysgro.2011.06.015
16.
16. E. Sakalauskas, H. Behmenburg, C. Hums, P. Schley, G. Rossbach, C. Giesen, M. Heuken, H. Kalisch, R. H. Jansen, J. Bläsing, A. Dadgar, A. Krost, and R. Goldhahn, J. Phys. D: Appl. Phys. 43, 365102 (2010).
http://dx.doi.org/10.1088/0022-3727/43/36/365102
17.
17. M. Wraback and H. Shen, Proc. SPIE 4650, 84 (2002).
http://dx.doi.org/10.1117/12.467652
18.
18. J.-F. Roux, J.-L. Coutaz, and A. Krotkus, Appl. Phys. Lett. 74, 2462 (1999).
http://dx.doi.org/10.1063/1.123881
19.
19. B. R. Bennett, R. A. Soref, and J. A. del Alamo, IEEE J. Quantum Electron. 26, 113 (1990).
http://dx.doi.org/10.1109/3.44924
20.
20. U. Siegner, R. Fluck, G. Zhang, and U. Keller, Appl. Phys. Lett. 69, 2566 (1998).
http://dx.doi.org/10.1063/1.117701
21.
21. A. Krotkus, K. Bertulis, M. Kaminska, K. Korona, A. Wolos, J. Siegert, S. Marcinkevičius, J.-F. Roux, and J.-L. Coutaz, IEE Proc. Optoelectron. 149, 111 (2002).
http://dx.doi.org/10.1049/ip-opt:20020435
22.
22. Y. D. Glinka, N. H. Tolk, X. Liu, Y. Sasaki, and J. K. Furdyna, J. Appl. Phys. 103, 043708 (2008).
http://dx.doi.org/10.1063/1.2840139
23.
23. R. Liu, G. D. Sanders, C. J. Stanton, C. S. Kim, J. S. Yahng, Y. D. Jho, K. J. Yee, E. Oh, and D. S. Kim, Phys. Rev. B 72, 195335 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.195335
http://aip.metastore.ingenta.com/content/aip/journal/adva/2/4/10.1063/1.4768670
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

PL spectra for AlInN/GaN structures with 0.14 (black curve) and 0.18 (red curve) In molar fractions. The spectra are shifted with respect to each other for clarity. The inset shows PLE spectrum of Al0.86In0.14N.

Image of FIG. 2.

Click to view

FIG. 2.

PR transients for Al0.86In0.14N/GaN structure with the 95 nm thick AlInN layer.

Image of FIG. 3.

Click to view

FIG. 3.

PR decay times (a) and signal amplitudes (b) measured for the 300 W/cm2 average pump power density for AlInN/GaN heterostructures. The arrows indicate uniform alloy AlInN band gaps.

Image of FIG. 4.

Click to view

FIG. 4.

Schematic diagram of an AlInN/GaN heterostructure. The short dashes with dots close to the valence band edge denote the sub-band edge states in the In clusters, the longer dotted dashes – the localized states related to AlInN composition fluctuations. Process A stands for the interband transitions over the uniform alloy band gap. Process B – for the electron absorption between the localized valence and conduction bands states, and between the In-cluster related valence band and extended conduction band states. Process C indicates the electron transitions from the In cluster-related valence band states to the conduction band with the subsequent electron transfer to the well or into the bulk of the AlInN layer. Process D stands for the interband absorption in GaN.

Image of FIG. 5.

Click to view

FIG. 5.

PR transients at 3.84 eV for 10 nm Al0.86In0.14N/GaN structure and GaN.

Loading

Article metrics loading...

/content/aip/journal/adva/2/4/10.1063/1.4768670
2012-11-20
2014-04-21

Abstract

Time-resolved photoreflectance (PR) in AlInN/GaN heterostructures was applied to study carrier dynamics at energies extending from the uniform AlInN alloy band gap to the band gap of GaN. PR at the AlInN band gap has been found to have subpicosecond decay. Such ultrafast carrier relaxation from the extended to the sub-band edge states implies that the localization sites are small and dense, most probably originating from the In-rich clusters. At energies below the AlInN band gap, a complicated energy dependence of the PR signal is attributed to the properties of the localized states and to the modulation of the interface electric field by photoexcitation.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/2/4/1.4768670.html;jsessionid=7irih32b0121.x-aip-live-01?itemId=/content/aip/journal/adva/2/4/10.1063/1.4768670&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Transient photoreflectance of AlInN/GaN heterostructures
http://aip.metastore.ingenta.com/content/aip/journal/adva/2/4/10.1063/1.4768670
10.1063/1.4768670
SEARCH_EXPAND_ITEM