NOTICE: Scitation Maintenance Sunday, March 1, 2015.

Scitation users may experience brief connectivity issues on Sunday, March 1, 2015 between 12:00 AM and 7:00 AM EST due to planned network maintenance.

Thank you for your patience during this process.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
Accurate evaluation of subband structure in a carrier accumulation layer at an n-type InAs surface: LDF calculation combined with high-resolution photoelectron spectroscopy
Rent this article for
Access full text Article
1. Y. Chen, J. C. Hermanson, and G. J. Lapeyre, Phys. Rev. B 39, 12682 (1989).
2. T. van Gemmeren, S. Rossi Salmagne, and W. Mönch, Appl. Surf. Sci. 65/66, 625 (1993).
3. C. Nowak, J. Krujatz, A. Märkl, C. Meyne, A. Chassé, W. Braun, W. Richter, and D. R. T. Zahn, Surf. Sci. 331-333, Part A, 619 (1995).
4. M. G. Betti, V. Corradini, G. Bertoni, P. Casarini, C. Mariani, and A. Abramo, Phys. Rev. B 63, 155315 (2001).
5. V. Y. Aristov, G. Le Lay, Le Thanh Vinh, K. Hricovini, and J. E. Bonnet, Phys. Rev. B 47, 2138 (1993).
6. V. Y. Aristov, G. Le Lay, V. M. Zhilin, G. Indlekofer, C. Grupp, A. Taleb-Ibrahimi, and P. Soukiassian, Phys. Rev. 60, 7752 (1999).
7. M. Morgenstern, J. Klijn, Chr. Meyer, M. Getzlaff, R. Adelung, R. A. Römer, K. Rossnagel, L. Kipp, M. Skibowski, and R. Wiesendanger, Phys. Rev. Lett. 89, 136806 (2002).
8. M. Getzlaff, M. Morgenstern, Chr. Meyer, R. Brochier, R. L. Johnson, and R. Wiesendanger, Phys. Rev. B 63, 205305 (2001).
9. T. D. Veal and C. F. McConville, Phys. Rev. B 64, 085311 (2001).
10. C. B. Duke, S. L. Richardson, A. Paton, and A. Kahn, Surf. Sci. 127, L135 (1983).
11. S. Y. Tong, W. N. Mei, and G. Xu, J. Vac. Sci. Technol. B 2, 393 (1984).
12. L. Smit, T. E. Derry, and J. F. van der Veen, Surf. Sci. 150, 245 (1985).
13. R. M. Feenstra, J. A. Stroscio, J. Tersoff, and A. P. Fein, Phys. Rev. Lett. 58, 1192 (1987).
14. J. E. Gayone, R. G. Pregliasco, G. R. Gómez, E. A. Sánchez, and O. Grizzi, Phys. Rev. B 56, 4186 (1997).
15. C. Mailhiot, C. B. Duke, and D. J. Chadi, Surf. Sci. 149, 366 (1985).
16. A. C. Ferraz and G. P. Srivastava, Surf. Sci. 182, 161 (1987).
17. G.-X. Qian, R. M. Martin, and D. J. Chadi, Phys. Rev. B 37, 1303 (1988).
18. J. L. A. Alves, J. Hebenstreit, and M. Scheffler, Phys. Rev. B 44, 6188 (1991).
19. H. S. Karlsson, R. Viselga, and U. O. Karlsson, Surf. Sci. 402-404, 590 (1998).
20. F. Bartels, L. Surkamp, H. J. Clemens, and W. Mönch, J. Vac. Sci. Technol. B 1, 756 (1983).
21. C. Astaldi, L. Sorba, C. Rinaldi, R. Mercuri, S. Nannarone, and C. Calandra, Surf. Sci. 162, 39 (1985).
22. O. M’Hamedi, F. Proix, and C. Sébenne, Semicond. Sci. Technol. 2, 418 (1987).
23. T. U. Kampen, L. Koenders, K. Smit, M. Rückschloss, and W. Mönch, Surf. Sci. 242, 314 (1991).
24. A. Ruocco, S. Nannarone, M. Sauvage-Simkin, N. Jedrecy, R. Pinchaux, and A. Waldhauer, Surf. Sci. 307-309, Part B, 662 (1994).
25. A. Ruocco, M. Biagini, A. di Bona, N. Gambacorti, S. Valeri, S. Nannarone, A. Santoni, and J. Bonnet, Phys. Rev. B 51, 2399 (1995).
26. J. E. Gayone, R. G. Pregliasco, E. A. Sánchez, and O. Grizzi, Phys. Rev. B 56, 4194 (1997).
27. F. Manghi, C. M. Bertoni, C. Calandra, and E. Molinari, J. Vac. Sci. Technol. 21, 371 (1982).
28. P. Jiang, Z. Yang, and F. Chen, Acta Phys. Sin. 4, 985 (1984).
29. C. M. Bertoni, M. Buongiorno Nardelli, F. Bernardini, F. Finocchi, and E. Molinari, Europhys. Lett. 13, 653 (1990).
30. A. F. Wright, C. Y. Fong, and I. P. Batra, Surf. Sci. 244, 51 (1991).
31. R. Di Felice, A. I. Shkrebtii, F. Finocchi, C. M. Bertoni, and G. Onida, J. Electron Spectrosc. Relat. Phonom. 64/65, 697 (1993).
32. J. Fritsch, A. Eckert, P. Pavone, and U. Schröder, J. Phys.: Condens. Matter 7, 7717 (1995).
33. L. Ö. Olsson, C. B. M. Andersson, M. C. Håkansson, J. Kanski, L. Ilver, and U. O. Karlsson, Phys. Rev. Lett. 76, 3626 (1996).
34. S. Abe, T. Inaoka, and M. Hasegawa, Phys. Rev. B 66, 205309 (2002).
35. E. O. Kane, J. Phys. Chem. Solids 1, 249 (1957).
36. M. Noguchi, K. Hirakawa, and T. Ikoma, Phys. Rev. Lett. 66, 2243 (1991).
37. G. R. Bell, C. F. McConville, and T. S. Jones, Phys. Rev. B 54, 2654 (1996).
38. K. Hashimoto, C. Sohrmann, J. Wiebe, T. Inaoka, F. Meier, Y. Hirayama, R. A. Römer, R. Wiesendanger, and M. Morgenstern, Phys. Rev. Lett. 101, 256802 (2008).
39. M. Minowa, R. Masutomi, T. Mochizuki, and T. Okamoto, Phys. Rev. B 77, 233301 (2008).
40. T. Mochizuki,, R. Masutomi, and T. Okamoto, Phys. Rev. Lett. 101, 267204 (2008).
41. L. Colakerol, T. D. Veal, H.-K. Jeong, L. Plucinski, A. DeMasi, T. Learmonth, P.-A. Glans, S. Wang, Y. Zhang, L. F. J. Piper, P. H. Jefferson, A. Fedorov, T.-C. Chen, T. D. Moustakas, C. F. McConville, and K. E. Smith, Phys. Rev. Lett. 97, 237601 (2006).
42. P. D. C. King, T. D. Veal, D. J. Payne, A. Bourlange, R. G. Egdell, and C. F. McConville, Phys. Rev. Lett. 101, 116808 (2008).
43. P. D. C. King, T. D. Veal, and C. F. McConville, Phys. Rev. B 77, 125305 (2008).
44. J. M. Ziman, Pinciples of the Theory of Solids (Cambridge University Press, Cambridge, 1972) chap. 6, secs. 6.3 and 6.4.
45. R. G. Dandrea, N. W. Ashcroft, and A. E. Carlsson, Phys. Rev. B 34, 2097 (1986).
46. M. Hass and B. W. Henvis, J. Phys. Chem. Solids 23, 1099 (1962).
47. F. Lukes, Phys. Status Solidi b 84, K113 (1977).
48. C. R. Pidgeon, S. H. Groves, and J. Feinleib, Solid State Commun. 5, 677 (1967).
49. J. Takayama, K. Shimomae, and C. Hamaguchi, Jpn. J. Appl. Phys. 20, 1265 (1981).
50. A. V. Varfolomeev, R. P. Seisyan, and R. N. Yakimova, Sov. Phys. Semicond. (English transl.) 9, 530 (1975);
50.A. V. Varfolomeev, R. P. Seisyan, and R. N. Yakimova, Fiz. Tekh. Poluprovodn. 9, 804 (1975).
51. Y. Chen, S. Nannarone, J. Schaefer, J. C. Hermanson, and G. J. Lapeyre, Phys. Rev. B 39, 7653 (1989).

Data & Media loading...


Article metrics loading...



Adsorption on an n-type InAssurface often induces a gradual formation of a carrier-accumulation layer at the surface. By means of high-resolution photoelectron spectroscopy (PES), Betti et al. made a systematic observation of subbands in the accumulation layer in the formation process. Incorporating a highly nonparabolic (NP) dispersion of the conduction band into the local-density-functional (LDF) formalism, we examine the subband structure in the accumulation-layer formation process. Combining the LDF calculation with the PES experiment, we make an accurate evaluation of the accumulated-carrier density, the subband-edge energies, and the subband energy dispersion at each formation stage. Our theoretical calculation can reproduce the three observed subbands quantitatively. The subband dispersion, which deviates downward from that of the projected bulk conduction band with an increase in wave number, becomes significantly weaker in the formation process. Accurate evaluation of the NP subband dispersion at each formation stage is indispensable in making a quantitative analysis of collective electronic excitations and transport properties in the subbands.


Full text loading...

This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Accurate evaluation of subband structure in a carrier accumulation layer at an n-type InAs surface: LDF calculation combined with high-resolution photoelectron spectroscopy